Hypoxic-ischaemic encephalopathy (HIE)
Disclaimer

This guideline is intended as a guide and provided for information purposes only. The information has been prepared using a multidisciplinary approach with reference to the best information and evidence available at the time of preparation. No assurance is given that the information is entirely complete, current, or accurate in every respect.

The guideline is not a substitute for clinical judgement, knowledge and expertise, or medical advice. Variation from the guideline, taking into account individual circumstances may be appropriate.

This guideline does not address all elements of standard practice and accepts that individual clinicians are responsible for:

- Providing care within the context of locally available resources, expertise, and scope of practice
- Supporting consumer rights and informed decision making including the right to decline intervention or ongoing management
- Advising consumers of their choices in an environment that is culturally appropriate and which enables comfortable and confidential discussion. This includes the use of interpreter services where necessary
- Ensuring informed consent is obtained prior to delivering care
- Meeting all legislative requirements and professional standards
- Applying standard precautions and additional precautions as necessary when delivering care
- Documenting all care in accordance with mandatory and local requirements

Queensland Health disclaims, to the maximum extent permitted by law, all responsibility and all liability (including without limitation, liability in negligence) for all expenses, losses, damages and costs incurred for any reason associated with the use of this guideline, including the materials within or referred to throughout this document being in any way inaccurate, out of context, incomplete or unavailable.
Checklist: Criteria for therapeutic hypothermia (cooling)

Term or near term (greater than or equal to (≥) 35 weeks) baby with a perinatal event and/or acidosis: call Retrieval Services Queensland (RSQ) on 1300 799 127 to discuss the need for transfer and therapeutic hypothermia with a neonatologist.

1. Baby meets the following criteria:
 - ≥ 35 weeks
 - Birth weight ≥ 1800 grams
 - Able to begin cooling before 6 hours of age
 - Assessment of relative contraindications (e.g. uncontrolled pulmonary hypertension, critical bleeding or coagulopathy, major congenital abnormalities)
 - Not moribund and with plans for full care

AND

2. Evidence of perinatal/intrapartum hypoxia, as indicated by at least one of the following:
 - Apgar score of less than or equal to (≤) 5 at 10 minutes
 - pH less than 7.00 or a base deficit worse than or equal to minus 12 mmol/L on a cord/arterial/venous/capillary blood gas obtained within 60 minutes of birth
 - Mechanical ventilation or ongoing resuscitation for ≥ 10 minutes

AND

3. Baby must meet either of the following within 6 hours of birth:
 - Seizures (witnessed by medical or nursing staff or as seen on aEEG/EEG)
 OR:
 - Early onset encephalopathy determined by the baby exhibiting a minimum of one symptom in at least 3 categories as documented below

<table>
<thead>
<tr>
<th>Category</th>
<th>Encephalopathy</th>
<th>Hours from birth (document time of exam)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moderate (Mod)</td>
<td>Severe (S)</td>
</tr>
<tr>
<td>Level of consciousness</td>
<td>Lethargic</td>
<td>Stupor or coma</td>
</tr>
<tr>
<td>Spontaneous activity</td>
<td>Decreased activity</td>
<td>No activity</td>
</tr>
<tr>
<td>Posture</td>
<td>Distal flexion, complete extension</td>
<td>Decerebrate</td>
</tr>
<tr>
<td>Tone*</td>
<td>Hypotonia (focal or general)</td>
<td>Flaccid</td>
</tr>
<tr>
<td>Primitive reflexes</td>
<td>Weak suck or incomplete Moro</td>
<td>Absent suck or Moro</td>
</tr>
<tr>
<td>Autonomic system</td>
<td>Constricted pupils, bradycardia or periodic/irregular breathing</td>
<td>Deviated/dilated/ non-reactive pupils, variable heart rate or apnoea</td>
</tr>
</tbody>
</table>

*Assess tone in both limbs and trunk/neck

Flowchart: Criteria for therapeutic hypothermia (cooling)

Does therapeutic hypothermia need to commence?

The baby presents with evidence of acute perinatal/intrapartum hypoxia-ischaemia as suggested by at least one of the following:
- Apgar score ≤ 5 at 10 minutes
- The blood gas (cord/arterial/venous/capillary) within 60 minutes of birth includes either a:
 - pH < 7.00, or
 - Base excess ≤ minus 12 mmol/L
- Mechanical ventilation or ongoing resuscitation for ≥ 10 minutes

No Babies who are likely to meet the criteria for therapeutic hypothermia: initiate early discussion with a neonatologist
- CSCF Level 1–5 neonatal service:
 - Contact RSQ: 1300 799127
 - Refer to QCG: Neonatal stabilisation for retrieval

Does baby meet criteria for probable moderate or severe HIE (i.e. seizures or 3 of the following)?
- Level of consciousness: Lethargy or stupor/coma
- Spontaneous activity: Decreased or no activity
- Posture: Distal flexion, complete extension, or decerebrate
- Tone: Hypotonia (focal or general e.g. head/neck tone) or flaccid
- Primitive reflexes: Weak/absent suck or incomplete/absent Moro response
- Autonomic system: Constricted/deviated/dilated/non-reactive pupils, bradycardia-variable heart rate, periodic/irregular breathing, apnoea

Reassess and document hourly for the first 6 hours following birth [refer to Checklist: Criteria for therapeutic hypothermia (cooling)]

Is the baby:
- ≥ 35 weeks, and
- ≥ 1800 grams, and
- Less than 6 hours old?

No Discuss with neonatologist

Yes

- Baby qualifies for therapeutic hypothermia
 - CSCF Level 1–5 neonatal service: discuss the type of cooling (passive or active) to be provided with a Level 6 neonatologist

Abbreviations: aEEG Amplitude-integrated electroencephalograph; CSCF Clinical Services Capability Framework; EEG Electroencephalograph; QCG Queensland Clinical Guidelines; RSQ Retrieval Services Queensland; ≥ greater than or equal to; ≤ less than or equal to
Flowchart: HIE clinical features, investigations and management

Clinical features
- Neurological
 - Abnormal neurological exam
 - Seizures
- Respiratory
 - Hypoxaemia
 - Respiratory acidosis
- Cardiovascular
 - Hypotension
 - Shock
 - Arrhythmias
 - Heart failure
 - Ischaemia
- Metabolic
 - Hypo/hyperglycaemia
 - Hypocalcaemia
 - Hypomagnesaemia
 - Lactic acidosis
 - Hyponatraemia
- Renal failure
 - Acute tubular or cortical necrosis
 - Oliguria
 - Polyuria
 - Haematuria
- Haematology
 - Elevated nucleated RBC
 - Thrombocytopenia
 - Bleeding: DIC
 - Thrombosis
- Gastrointestinal
 - Feeding intolerance
 - Bleeding
 - Gut ischaemia: NEC

Investigations
- Continuous aEEG/EEG
- Monitor for seizures
- MRI
- Cord blood gas
- Arterial blood gas
- CXR
- Blood gas
- Echocardiography
- Blood glucose
- Calcium, magnesium
- Lactate
- Electrolytes
- Serum & urine osmolarity
- Urea
- Creatinine
- FBC including platelets
- LFTs
- Coagulation screen

Management
- Anticipate need for resuscitation from maternal/obstetric/labour history (including CTG trace)
- Refer to QCG: Neonatal resuscitation
- Maintain breathing & circulation
- Supportive treatment
- Treat seizures [refer to QCG: Neonatal seizures]
- Avoid:
 - Hypo/hyper ventilation (keep PaCO₂ in normal range)
 - Hypoxaemia/hyperoxia
 - Hyperthermia
 - Hypotension
 - Inotropes as indicated
 - Correct metabolic acidosis
 - Maintain normal blood glucose, calcium and magnesium
 - Restrict fluid intake
 - Commence IV 10% Glucose at 40–50 mL/kg/day
 - Monitor urine output
 - Nutritional support: TPN if required
 - Therapeutic hypothermia if criteria met
 - Core temperature of 33–34°C within 6 hours of birth for 72 hours

Ongoing care and assessment
- Physio and speech therapy
- Family support
- Developmental assessment

Differential diagnosis investigations
Consider:
- Lumbar puncture
- Bloods for chromosome analysis, ammonia, amino acids
- Urine for amino and organic acids, ketones, reducing substances
- Early NNST [repeat NNST at normal collection date]
- Cranial US

Abbreviations: aEEG Amplitude-integrated electroencephalograph; CTG Cardiotocograph; CXR Chest x-ray; DIC Disseminated intravascular coagulation; EEG Electroencephalograph; FBC Full blood count; IV Intravenous; LFTs Liver function tests; MRI Magnetic resonance imaging; NEC Necrotising enterocolitis; NNST Newborn screening test; PaCO₂ Partial pressure of carbon dioxide; QCG Queensland Clinical Guideline; RBC Red blood cells; TPN Total parental nutrition; US ultrasound

Queensland Clinical Guideline: Hypoxic-ischaemic encephalopathy (HIE) F17.11-3-V7-R21
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aEEG</td>
<td>Amplitude-integrated electroencephalograph</td>
</tr>
<tr>
<td>APTT</td>
<td>Activated partial thromboplastin time</td>
</tr>
<tr>
<td>BP</td>
<td>Blood pressure</td>
</tr>
<tr>
<td>CUS</td>
<td>Cranial ultrasound</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalograph</td>
</tr>
<tr>
<td>FBC</td>
<td>Full blood count</td>
</tr>
<tr>
<td>HIE</td>
<td>Hypoxic-ischaemic encephalopathy</td>
</tr>
<tr>
<td>HR</td>
<td>Heart rate</td>
</tr>
<tr>
<td>INR</td>
<td>International normalise ratio for blood clotting</td>
</tr>
<tr>
<td>ISC</td>
<td>Infant Servo Control</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>NICU</td>
<td>Neonatal intensive care unit</td>
</tr>
<tr>
<td>NNST</td>
<td>Newborn screening test</td>
</tr>
<tr>
<td>RSQ</td>
<td>Retrieval Services Queensland</td>
</tr>
<tr>
<td>SpO2</td>
<td>Peripheral capillary oxygen saturation</td>
</tr>
</tbody>
</table>

Definition of terms

<table>
<thead>
<tr>
<th>Shared decision making</th>
<th>Definition adapted for the newborn and family:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shared decision making involves the integration of a family's values, goals and concerns with the best available evidence about benefits, risks and uncertainties of treatment, in order to achieve appropriate health care decisions for the baby. It involves clinicians and parents (and carers) making decisions about the baby’s management together.</td>
</tr>
<tr>
<td></td>
<td>In partnership with their clinician, parents (and carers) are encouraged to consider available screening, treatment, or management options and the likely benefits and harms of each, to communicate their preferences, and help select the course of action that best fits these.</td>
</tr>
</tbody>
</table>
Queensland Clinical Guideline: Hypoxic-ischaemic encephalopathy (HIE)

Table of Contents
Flowchart: HIE clinical features, investigations and management ... 5
Abbreviations ... 6
Definition of terms ... 6
1 Introduction ... 8
 1.1 Incidence .. 8
 1.2 Parental considerations ... 8
 1.3 Clinical standards for therapeutic hypothermia .. 8
2 Intrapartum events ... 9
3 Diagnosis ... 9
 3.1 Differential diagnosis ... 9
 3.2 Diagnostic criteria .. 9
 3.3 Clinical staging ... 10
4 Clinical management .. 11
 4.1 Resuscitation .. 11
 4.2 Observation and monitoring .. 11
 4.3 Supportive care ... 11
 4.3.1 Infection .. 13
 4.3.2 Investigations .. 13
 4.3.3 Allied health, physiotherapy and speech therapy .. 13
 4.4 Neuroimaging .. 13
 4.5 Therapeutic hypothermia ... 14
 4.5.1 Assessment and monitoring .. 14
 4.5.2 Cooling and rewarming clinical management ... 15
 4.5.3 Babies born in Level 1 to 5 neonatal facilities ... 15
5 Prognosis .. 15
 5.1 Prognostic tools ... 16
6 Follow-up .. 17
References .. 18
Appendix A: Parental discussion points ... 20
Appendix B: Sarnat and Sarnat staging system ... 21
Appendix C: Therapeutic hypothermia: cooling and rewarming .. 22
Appendix D: Flowchart: Passive cooling ... 24
Queensland Clinical Guideline: Hypoxic-ischaemic encephalopathy (HIE) F16.11-4-V7-R21 24
Acknowledgements ... 25

List of Tables
Table 1. Differential diagnosis ... 9
Table 2. Modified HIE staging criteria ... 10
Table 3. Initial care .. 11
Table 4. Observation and monitoring ... 11
Table 5. Supportive care .. 12
Table 6. Infection .. 13
Table 7. Investigations summarised ... 13
Table 8. Allied health ... 13
Table 9. Neuroimaging ... 13
Table 10. Criteria for therapeutic hypothermia .. 14
Table 11. Assessment and monitoring .. 14
Table 12. Babies born in Level 1 to 5 neonatal facilities ... 15
Table 13. Predictors of outcome after HIE: comparison between cooled and non-cooled babies 16

Refer to online version, destroy printed copies after use
1 Introduction

Hypoxic-ischaemic encephalopathy (HIE) is a type of neonatal encephalopathy caused by systemic hypoxaemia and/or reduced cerebral blood flow resulting from an acute peripartum or intrapartum event. It is a condition which can cause significant mortality and long-term morbidity. HIE can be a clinical consequence of perinatal, birth and/or neonatal asphyxia.

1.1 Incidence

In Queensland, from 2007–2012, the incidence of “Intrauterine hypoxia and birth asphyxia” was 4–6 per 1000 live preterm and term births. In developed countries, noting differences in definitions between studies and countries, the incidence of:

- Intrapartum hypoxia-ischaemia is 3.7 (range 2.9–8.3) per 1000 term births, and
- HIE is 2.5 per 1000 live term births

1.2 Parental considerations

Parents of babies with HIE usually experience acute distress due to the seriousness of their baby’s condition. It is difficult to offer an early accurate prognosis in the first few days after birth, therefore, regular discussions and meetings with the parents, neonatologist, other medical teams, and nursing staff will be required:

- Involve parents in shared decision making:
 - Discuss HIE and treatment options
 - Refer to Appendix A: Parental discussion points
- Facilitate parental involvement in their baby’s care:
 - Explain tests and procedures, comfort measures, pain management, equipment
 - Dependent upon the baby’s condition, assist the parents to provide care measures
- Refer to local support services where required (e.g. social work)
- Provide written parent information on HIE
- If required, provide palliative and bereavement care

1.3 Clinical standards for therapeutic hypothermia

Where active therapeutic hypothermia is indicated [refer to Section 4.5 Therapeutic hypothermia] provide care in a Level 6 neonatal service (as defined by the Clinical Services Capability Framework) which is capable of providing comprehensive clinical care including:

- Mechanical ventilation
- Core temperature and vital signs monitoring
- Biochemical, coagulation and haematological monitoring
- Neuroimaging including magnetic resonance imaging (MRI)
- Detection and monitoring of seizures including with an amplitude-integrated electroencephalograph (aEEG) or electroencephalograph (EEG)
- Neurologic consultation
- Systems for monitoring of longitudinal neurodevelopmental outcomes
2 Intrapartum events

An absence of an intrapartum sentinel event does not exclude the diagnosis of HIE. Events which may precede HIE include:

- A significant peripartum or intrapartum hypoxic-ischaemic event (e.g. uterine rupture, placental abruption, cord prolapse, amniotic fluid embolism, fetal exsanguination from a vasa praevia or massive feto-maternal haemorrhage)
- A normal fetal heart rate pattern that changed to:
 - Sinusoidal pattern
 - Absent baseline variability with recurrent late or variable decelerations, or bradycardia
 - Another fetal heart rate pattern such as tachycardia with recurrent decelerations or persistent minimal variability with recurrent decelerations [refer to Queensland Clinical Guideline Intrapartum fetal surveillance]

3 Diagnosis

Suspect neonatal encephalopathy in the baby who is depressed at birth and who, in the earliest hours of life, presents with disturbed neurological function including:

- A subnormal level of consciousness or seizures
- And frequently:
 - Difficulty initiating and maintaining respiration
 - Depression of tone and reflexes

3.1 Differential diagnosis

Use the term neonatal encephalopathy, rather than HIE, until there is comprehensive evidence of a hypoxic and/or ischaemic injury during the perinatal and/or intrapartum period.

Table 1. Differential diagnosis

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential</td>
<td>Metabolic abnormalities, congenital abnormalities, meningitis, hypoglycaemia, hyperbilirubinaemia, chronic placental insufficiency</td>
</tr>
<tr>
<td>diagnosis</td>
<td>Other causes of seizures/encephalopathy in neonates include intracranial haemorrhage, perinatal stroke, drug withdrawal</td>
</tr>
<tr>
<td>Investigations</td>
<td>Refer to Section 4.3.2 Investigations</td>
</tr>
</tbody>
</table>

3.2 Diagnostic criteria

To determine the probability of HIE in the baby who has neonatal encephalopathy, assess for features suggestive of a hypoxic and/or ischaemic injury during the perinatal and/or intrapartum period:

- Fetal umbilical artery acidaemia: pH less than 7.00 and/or base deficit worse than or equal to minus 12 mmol/L
- Apgar score of less than or equal to 5 at 5 and 10 minutes
- Examination consistent with mild, moderate or severe encephalopathy [refer to Section 3.3 Clinical staging and/or Checklist: Criteria for therapeutic hypothermia (cooling)]
- Onset of multisystem organ failure which may include a combination of renal injury, hepatic injury, hematologic abnormalities, cardiac dysfunction, metabolic derangements, and gastrointestinal injury
3.3 Clinical staging

HIE is classified in stages, which if applied consistently provide useful information about the magnitude of injury and prognosis. Refer to Table 2 for HIE staging criteria. Sarnat and Sarnat described the original HIE clinical staging system.10 It is important to note this was originally described when the babies were 24 hours old and at a time when no early therapeutic intervention was available [refer to Appendix B: Sarnat and Sarnat staging system]

Undertake assessment of HIE stage as soon as possible after the baby is stabilised. In those babies who are high risk, perform frequent (i.e. minimum hourly) assessment of neurological status within the first 6 hours of birth [refer to Checklist: Criteria for therapeutic hypothermia (cooling)]

A baby may deteriorate and move from Stage 1 to Stage 2. If the baby meets the criteria for therapeutic hypothermia within the first 6 hours of birth, then the baby may still benefit from therapeutic hypothermia even though the baby was not eligible at birth. Therapeutic interventions will require the baby to be transferred to a Level 6 neonatal service.

Table 2. Modified HIE staging criteria

<table>
<thead>
<tr>
<th>Stage of HIE</th>
<th>Features</th>
</tr>
</thead>
</table>
| Mild (Stage 1) | • Muscle tone may be increased slightly and deep tendon reflexes may be brisk during the first few days
• Transient behavioural abnormalities, such as poor feeding, irritability, or excessive crying or sleepiness, may be observed
• By 3–4 days of life, the central nervous system examination findings become normal |
| Moderate (Stage 2) | • The baby is lethargic, with significant hypotonia and diminished deep tendon reflexes
• The grasping, Moro, and sucking reflexes may be sluggish or absent
• The baby may experience occasional periods of apnoea
• Seizures may occur within the first 24 hours of life
• Full recovery within 1–2 weeks is possible and is associated with a better long-term outcome
• An initial period of well-being or mild HIE may be followed by sudden deterioration, suggesting ongoing brain cell dysfunction, injury, and death:
 o During this period, seizure intensity might increase |
| Severe (Stage 3) | • Stupor or coma is typical:
 o The baby may not respond to any physical stimulus
 o Breathing may be irregular and the baby often requires ventilator support
 o Generalised hypotonia and depressed deep tendon reflexes are common
 o Neonatal reflexes (e.g. sucking, swallowing, grasping, Moro) are absent
 o Disturbances of ocular motion (e.g. skewed deviation of the eyes, nystagmus, bobbing, and loss of "doll's eye" i.e. conjugate movements) may be revealed by cranial nerve examination
 o Pupils may be dilated, fixed or poorly reactive to light
 o Seizures occur early and often and may be initially resistant to conventional treatments
 o The seizures are usually generalised, and their frequency may increase during the 24–48 hours after onset, correlating with the phase of reperfusion injury
 o As the injury progresses, seizures subside and the EEG becomes isoelectric or shows a burst suppression pattern
 ▪ At that time, wakefulness may deteriorate further, and the fontanelle may bulge, suggesting increasing cerebral oedema
 o Irregularities of heart rate (HR) and blood pressure (BP) are common during the period of reperfusion injury, as is death from cardiorespiratory failure |
| Clinical interpretation | • In Stage 1, the baby will usually require minimal support with a normal neurological examination within 3–4 days
• In Stage 2 and 3, the baby will be significantly more unwell and the level of support required is dependent on the degree of organ compromise |
4 Clinical management
Clinical management is primarily supportive, with the addition of therapeutic hypothermia for neuroprotection in those babies who meet the criteria [refer to Section 4.5 Therapeutic hypothermia]. Consider if the baby requires transfer to a Level 6 neonatal service. Prompt contact with Retrieval Services Queensland (RSQ) is advised [refer to Section 4.5.3 Babies born in Level 1 to 5 neonatal facilities].

4.1 Resuscitation

Table 3. Initial care

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| Resuscitation| • Babies with hypoxic ischaemic encephalopathy typically require respiratory support (Continuous positive airway pressure (CPAP) or positive pressure ventilation) at birth
 o Some babies need cardiac compressions and/or IV Adrenaline
 o Aim for normothermia until the baby meets the inclusion criteria for therapeutic hypothermia
 o Monitor temperature to avoid hyperthermia (greater than 37.5 °C)
 • Refer to the Queensland Clinical Guideline: Neonatal resuscitation
 • Measure cord blood gases
 • Ensure a capillary, venous or arterial blood gas is taken within the first hour following birth |

4.2 Observation and monitoring

Table 4. Observation and monitoring

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| Observation | • As the criteria for therapeutic hypothermia may be met within the first 6 hours following birth, undertake serial clinical assessments for level of encephalopathy, on all babies who meet any of the following:
 o Continued need for resuscitation equal to or greater than 10 minutes
 o 10 minute Apgar score of less than or equal to 5
 o pH of less than 7.00 and/or base excess worse than or equal to minus 12 mmol/L (cord gas or gas measured within an hour of birth)
 • Commence continuous monitoring (HR, respiration rate and SpO2) and hourly (or more frequent) documented observations (including temperature, BP and HIE staging criteria) [refer to Table 2. Modified HIE staging criteria]
 • Avoid hyperthermia (greater than 37.5 °C)
 • Transfer to Level 6 neonatal service may be required |

4.3 Supportive care
Babies will often exhibit effects in one or more organ systems including renal, hepatic, haematologic, cardiac, metabolic and gastrointestinal. Individualise each baby’s management with continuous monitoring of cardiorespiratory status and early identification and treatment of seizures and multi-organ compromise (a characteristic of HIE) [refer to Table 5. Supportive care].
<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| Respiratory | **Ventilatory support as required; beware of:**
| | o Hyperoxia in the first 6 hours of life as it is a risk factor for adverse outcomes in babies with HIE treated with therapeutic hypothermia\(^\text{14}\)
| | o Over-ventilation and consequent hypocapnia that may lead to severe brain hypoperfusion, cellular alkalosis and worse neurodevelopmental outcomes |
| Cardiovascular | **Hypotension, shock, cardiomegaly, arrhythmias, heart failure or ischaemia may occur**
| | o Maintain mean arterial pressure above 35–40 mmHg for term babies
| | o Inotropes may be required if hypotensive
| | o Exercise caution before giving fluid boluses in the absence of suspected hypovolaemia [refer to Renal row below]
| | o Avoid iatrogenic hypertension
| | o Consider echocardiography (ECHO) as it may identify hypovolaemia, poor myocardial contractility and low flow states |
| Neurological | **Refer to Table 4. Observation and monitoring**
| | In moderate to severe HIE:
| | o Commence continuous aEEG (if available) for 96 hours (or EEG, ideally accompanied by video) in order to confirm clinical seizures and detect subclinical seizures and provide prognostic value
| | For management of seizures, refer to the Queensland Clinical Guideline: *Neonatal seizures*\(^\text{15}\) |
| Renal | **Oliguria, haematuria, proteinuria, myoglobinuria, polyuria or renal failure may occur**
| | o Investigations: urea, creatinine
| | o Commence IV 10% glucose at 40–50 mL/kg/day
| | o Monitor fluid balance
| | o Consider avoiding nephrotoxic drugs
| | o Monitor levels of gentamicin: longer dosing intervals (e.g. 36 hours) may be required in babies receiving hypothermia\(^\text{16,17}\)
| | o If oliguria/anuria present consider:
| | o Circulating blood volume, if hypovolaemia likely, an IV 0.9% sodium chloride bolus may be required
| | o Urinary catheterisation
| | o Dopamine or other inotrope infusion [refer to local drug protocols]
| | o Withholding the subsequent dose of aminoglycoside (gentamicin) if prescribed |
| Metabolic | **Hypo/hyperglycaemia, hypocalcaemia, hyponatraemia, hypomagnesaemia, lactic acidosis may occur**
| | o Investigations include blood glucose, calcium, magnesium, serum lactate, electrolytes, serum and urine osmolarity
| | o Maintain blood glucose levels within normal physiological ranges
| | o Perform an early blood glucose level
| | o Refer to Queensland Clinical Guideline: *Newborn hypoglycaemia*\(^\text{18}\) |
| Haematology | **Thrombocytopenia, thrombosis, elevated nucleated red blood cells may be present: collect a full blood count**
| | o Disseminated intravascular coagulopathy (DIC) is a significant risk after hypoxic injury to the liver\(^\text{2}\)
| | o Monitor liver function tests (LFTs)\(^\text{19}\)
| | o If there is bleeding, thrombocytopenia or petechiae
| | o Perform a coagulation profile
| | o Consider fresh frozen plasma (FFP), or other component therapy as required, and a second dose of Vitamin K |
| Gastrointestinal | **The baby is at risk for necrotising enterocolitis**
| | **Do not feed if receiving therapeutic hypothermia**
| | **Cautiously reintroduce feeds following rewarming: breast milk is ideal** |
4.3.1 Infection

Table 6. Infection

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| Infection | • May co-exist with HIE²⁰⁻²²
• Investigations include a septic work-up
• Start antibiotics penicillin and gentamicin as per local policy
• Refer to Queensland Clinical Guideline: *Early onset Group B streptococcal disease*²³ |

4.3.2 Investigations

Table 7. Investigations summarised

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| Routine investigations | • Blood gases, electrolytes, glucose and lactate (all obtainable from blood gas sample)
• FBC including platelets
• INR and APTT clotting studies
• Liver and renal function: day 1–2
• Septic work-up
• The above may need to be repeated (e.g. daily or more often) if abnormal or if there is ongoing moderate or severe encephalopathy or signs of dysfunction of other organs (e.g. oliguria) |
| Differential diagnosis | • To exclude other causes of neonatal encephalopathy consider:
 o Lumbar puncture
 o Blood for chromosome analysis, ammonia, amino acids
 o Urine for amino and organic acids, ketones, reducing substances
 o Early newborn screening test (NNST) if metabolic/genetic disorders suspected. Repeat NNST when it would normally have been collected
 o Cranial ultrasound (CUS) |

4.3.3 Allied health, physiotherapy and speech therapy

Table 8. Allied health

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| Allied health, physiotherapy and speech therapy | • Role in providing neurodevelopmental input and education for parents
• Initial and ongoing neurological examination of the baby, including assessment of tone, movement, behaviour and oromotor responses, are valuable in order to track progress |

4.4 Neuroimaging

Table 9. Neuroimaging

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| Neuroimaging | • Is unable to determine aetiology of HIE⁷ but may be essential to rule out alternative diagnoses (e.g. brain malformation, intracranial haemorrhage, tumour)
• CUS:
 o Perform on day 1 to exclude neurosurgical cause for HIE or structural brain abnormality
 o CUS (and computed tomography) lack sensitivity in newborn babies for evaluating the nature and extent of the injury⁷
• MRI, including magnetic resonance spectroscopy⁷:
 o Routinely perform at 7 (5–10) days of life to better define and assess the extent of the injury which will aid likely prognosis
 o Patterns of brain injury consistent with HIE include deep nuclear gray matter or watershed cortical injury |
4.5 Therapeutic hypothermia

In moderate to severe HIE, therapeutic hypothermia provided in accordance with specific criteria [refer to Table 10. Criteria for therapeutic hypothermia] is associated with statistically significant improvement in survival\(^\text{24}\) with normal neurological function\(^\text{25}\) and a reduction in:

- Major disability\(^\text{24, 25}\)
- Neurodevelopmental disability\(^\text{24}\), including cerebral palsy\(^\text{24, 25}\)
- Developmental delay\(^\text{24, 25}\)
- Blindness\(^\text{25}\)
- Risk of death at 18 months\(^\text{26}\)

Commence therapeutic hypothermia within 6 hours of birth where the criteria outlined in Table 10 are met. Utilisation of therapeutic hypothermia in asphyxiated babies outside these criteria (e.g. postnatal collapse\(^\text{26}\)) requires cautious consideration by a neonatologist from a unit which specialises in therapeutic hypothermia. Cooling babies with intracranial haemorrhage has not proven to be beneficial\(^\text{26}\).

Table 10. Criteria for therapeutic hypothermia

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| Inclusion criteria\(^\text{24}\) | • Evidence of perinatal/intrapartum hypoxia, as indicated by at least one of:
 - Apgar score of less than or equal to 5 at 10 minutes
 - Needing mechanical ventilation or ongoing resuscitation at 10 minutes
 - pH less than 7.00 or a base deficit worse than or equal to minus 12 mmol/L on cord/arterial/venous/capillary blood gas obtained within 60 minutes of birth
 - Evidence of moderate or severe encephalopathy [refer to Checklist: Criteria for therapeutic hypothermia (cooling)]
| Greater than or equal to 35 weeks gestational age | • Birth weight greater than or equal to 1800 g |
| | • Able to begin cooling before 6 hours of birth |

Relative contraindications

- Major congenital abnormalities identified\(^\text{24}\) including:
 - Suspected neuromuscular disorders
 - Suspected chromosomal abnormalities
 - Life threatening abnormalities of the cardiovascular or respiratory systems
- Uncontrolled pulmonary hypertension
- Critical bleeding or coagulopathy\(^\text{26, 27}\)
- So severely affected that there is little hope for normal outcome\(^\text{24, 28}\) i.e. moribund or “in extremis” (e.g. very low BP or severe acidosis unresponsive to treatment)

4.5.1 Assessment and monitoring

Table 11. Assessment and monitoring

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial stabilisation</td>
<td>• Assess and stabilise baby prior to commencing therapeutic hypothermia</td>
</tr>
<tr>
<td></td>
<td>• Commence passive cooling</td>
</tr>
<tr>
<td></td>
<td>- Nurse baby wearing only a nappy and on an open care system cot with radiant warmer turned off</td>
</tr>
<tr>
<td></td>
<td>- Insert (preferably umbilical) venous and arterial catheters (arterial catheter insertion usually to occur at a Level 5 or 6 neonatal service)</td>
</tr>
<tr>
<td></td>
<td>- Hypothermia makes vascular access more difficult</td>
</tr>
<tr>
<td></td>
<td>- Collect blood samples as per neonatologist’s request [refer to Table 7]</td>
</tr>
<tr>
<td></td>
<td>- Insert nasogastric tube</td>
</tr>
</tbody>
</table>

Observation and monitoring	• Commence continuous monitoring with hourly documentation
	- Cardio-respiratory and oxygen saturation
	- If invasive BP monitoring is not available, document 10 minute manual BP
	- Temperature:
	- Active cooling–continuous core monitoring
	- Passive cooling–intermittent axilla temperature if rectal probe unavailable
	- Observe for seizure activity [refer to Queensland Clinical Guideline: Neonatal seizures\(^\text{15}\)]
	- Monitor urine output
	- Daily neurological examinations as HIE may evolve over 1–4 days
4.5.2 Cooling and rewarming clinical management
Refer to Appendix C: Therapeutic hypothermia: cooling and rewarming

4.5.3 Babies born in Level 1 to 5 neonatal facilities

Table 12. Babies born in Level 1 to 5 neonatal facilities

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resuscitation</td>
<td>• Attention to airway, breathing and circulation takes priority over cooling
• Refer to Queensland Clinical Guideline: Neonatal resuscitation<sup>29</sup></td>
</tr>
<tr>
<td>Identify eligibility</td>
<td>• Consider all babies who meet the eligibility criteria for therapeutic hypothermia [refer to Table 10. Criteria for therapeutic hypothermia]
• Be proactive in identifying if a baby may be a candidate for therapeutic hypothermia if the blood gas pH is less than 7.00 at birth</td>
</tr>
<tr>
<td>Inter-hospital transfer</td>
<td>• Contact RSQ to arrange:
 o Consultation and decision by neonatologist with regard to the commencement of therapeutic hypothermia
 o Organise retrieval and a neonatal intensive care unit (NICU) bed
• Refer to Queensland Clinical Guideline: Neonatal stabilisation for retrieval<sup>29</sup></td>
</tr>
<tr>
<td>Therapeutic hypothermia and temperature monitoring</td>
<td>• Where therapeutic hypothermia is deemed appropriate by the neonatologist, target a temperature of between 33.0 °C and 34.0 °C
• The required core temperature can usually be achieved by turning the heater off (passive cooling)
• Refer to Appendix D: Flowchart: Passive cooling
• Any baby who is being cooled passively requires temperature monitoring:
 o In passive cooling, if continuous temperature monitoring is not available by a rectal probe, measure axilla temperature every 20 minutes
 o Document temperature every 30 minutes (rectal) or 20 minutes (axilla)
• If the target temperature is not achieved after 2 hours, or the baby’s temperature is not dropping by at least 0.5 °C each 30 minutes towards target temperature, further consultation with a neonatologist is required
 o Active cooling may be indicated
• Turn the heater on if the baby’s temperature is less than 33.5 °C and continue to closely monitor the temperature
Refer to Appendix C: Therapeutic hypothermia: cooling and rewarming</td>
</tr>
</tbody>
</table>

5 Prognosis

Early prognosis of long term outcome is difficult. Older prognostic studies such as Sarnat and Sarnat¹⁰ do not take into consideration the benefits of therapeutic hypothermia. The 2013 Cochrane review included outcomes for babies with moderate or severe HIE who were cooled according to strict protocols.²⁴ The number of babies needed to treat to reduce the combined outcome of mortality or major neurodevelopmental disability at 18 months of age was 7.²⁴ Outcomes following treatment with whole body therapeutic hypothermia included²⁴:

- Death or major neurodevelopmental disability: 48%
- Mortality: 27%
- Major neurodevelopmental disability (in surviving babies): 28%

Current outcomes may differ as therapeutic hypothermia has become standard treatment for most babies with moderate or severe HIE and also as utilisation of therapeutic hypothermia has sometimes occurred outside the established inclusion criteria.²⁶
5.1 Prognostic tools

Most prognostic tools were developed in the pre-therapeutic hypothermia era. Prognostic tool accuracy is improved if employed by skilled practitioners. Prognosis is best determined by using multiple modalities (clinical assessment and neurological examination, EEG and/or aEEG, MRI, Dubowitz and General Movements assessment), each within its optimal window, rather than any single method. Refer to Table 13 Predictors of outcome after HIE: comparison between cooled and non-cooled babies.30

<table>
<thead>
<tr>
<th>Outcome parameter</th>
<th>Pre cooling era30</th>
<th>Therapeutic hypothermia era30</th>
</tr>
</thead>
</table>
| **Apgar score** | • Score ≤ 4 at 5 minutes associated with neonatal seizures and poor neurodevelopmental outcome at 12 months [N=15]31
• Score ≤ 4 at 10 minutes associated with death or moderate/severe disability at 18–22 months [N=52]32 | • Score at 5 minutes not shown to be useful in cooled newborns32
• Score ≤ 2 at 10 minutes associated with death or moderate/severe disability at 18–22 months [N=24]32
• Score 0 at 10 minutes associated with death or severe disability at 18–22 months [N=12]33 |
| **Umbilical cord pH or arterial pH within 1 hour of birth** | • Arterial cord pH < 7.00 associated with development of different degrees of CP [N=157]34 | • Lower arterial neonatal pH within first hour after birth associated with death or injury (seen on MRI) in second week after birth [N=109]35 |
| **Base deficit** | • Base deficit ≥ 6.2 within 4 hours of birth plus need for resuscitation at birth: strong predictor of severe disability [N=204]35 | N/A |
| **Lactate** | • Lactate levels 11.09 (± 4.6) mmol/L within the first hour after birth associated with associatd with moderate to severe encephalopathy [N=65]36 | • Lactate levels ≥ 4.4 mmol/L highly predictive of degree of encephalopathy when combined with raised LDH, CK, and uric acid levels37
• Lactate level alone: a poor predictor of good outcome37 [N=94] |
| **Sarnat score I–III** | • Stages II and III 48 hours after birth associated with poor neurodevelopmental outcome at 12 months [N=28]31
• Stages II and III at 6 hours after birth associated with death or disability at 18–22 months [N=101]38 | • Stages II and III at 24 hours after birth associated with death or disability at 18–22 months [N=103]38 |
| **Neurological examination** | • Abnormal neurological examination on day 17 associated with abnormal neonatal MRI and poor neurodevelopmental outcome at 24 months34
• Normal examination at any time associated with good outcome [N=157]34 | • Abnormal neurobehavioral assessment on/after day 12 has a good correlation with injury seen on MRI (median day 8) [N=68]39; [N=45]40 |
| **Abnormal aEEG** (voltage criteria: upper margin >10 mV, lower margin <5 mV) | • Abnormal aEEG by 6 hours after birth can predict death or disability at 18–22 months41
• Development of SWC is a good outcome predictor, if onset within 36 hours after birth [N=24]31 | • Abnormal aEEG by 48 hours after birth can predict death or disability at 18–22 months42
• Development of SWC delayed due to hypothermia, but good outcome predictor if onset within 60 hours after birth [N=34]42 |
| **Conventional MRI at day 8** | • Major neonatal MRI abnormalities predict death or severe disability at 18 months [N=67]33,44,45,46 | Major neonatal MRI abnormalities predict death or severe disability at 18 months [N=64]47 |
| **MRI: T1- and T2-weighted and diffusion abnormalities** | • All T1- and T2-weighted and diffusion MRI abnormalities predictive of death and major sensorineural disability at 2 years of age48 | • All T1- and T2-weighted and diffusion MRI abnormalities predictive of death and major sensorineural disability at 2 years of age48 |

CK: creatine kinase; CP: cerebral palsy; LDH: lactate dehydrogenase; N/A: not applicable; SWC: sleep-wake cycling
Severe disability defined as: severe CP, severe developmental delay, sensorineural deafness, or cortical blindness.
6 Follow-up

- Plan a discharge and follow-up meeting with the parents
 - Discuss what happened to their baby, treatments and ongoing follow-up when the parents are ready to take their baby home (or shortly post-discharge) and when able to better take in information and ask questions

- Ensure all babies with moderate to severe HIE, and all babies who have received therapeutic hypothermia have a neurodevelopmental review by health professionals skilled in infant neuromotor and behavioural development (e.g. medical, allied health) and appropriate referrals are made prior to discharge

- Enrol babies with moderate to severe HIE into a standardised follow-up program from birth to 2 years of age which can provide assessment, appropriate follow-up and data collection on outcomes

- As early prognosis of long term outcome is difficult, inform parents that long term follow-up is important to enable appropriate referrals (if indicated) to specialised services

- Provide the parents with written information on the follow-up procedures as this may be difficult information to retain

- If the baby dies:
 - Discuss the purpose and/or value of an autopsy with the parent(s)
 - Suggest and refer parents to adequate support personnel for emotional/psychological support
 - Discuss and refer to the Coroner as required
References

Appendix A: Parental discussion points

The following discussion points may be useful when counselling parent(s) about aspects of HIE and therapeutic hypothermia. For associated parent information, refer to the Queensland Clinical Guidelines website (http://www.health.qld.gov.au/qcg).

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Suggested advice to parent(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resuscitation</td>
<td>• Your baby needed significant resuscitation at birth to help him/her breathe. He/she appears to have suffered from the effects of lack of oxygen and blood supply to the brain</td>
</tr>
<tr>
<td>Incidence</td>
<td>• About 1–4 in 1000 newborn babies suffer from the effects of reduced blood flow or oxygen supply to their brain around the time of birth</td>
</tr>
</tbody>
</table>
| Consequences | • This can result in brain damage from direct injury and also from subsequent secondary changes within the brain
 • These secondary changes are known to increase the amount of brain injury that occurs. Within 6 hours from injury there is a chance to lessen the secondary changes |
| Prognosis | • Babies with mild brain injury often have a normal outcome
 • Approximately 30 to 60% of those babies who survive after more severe damage to their brain may develop long-term disabilities. These disabilities include cerebral palsy and severe learning difficulties |
| Treatment | • Your baby will be assessed to see if cooling can be used as a treatment
 • Research has shown that cooling babies with moderate or severe brain injury may reduce the brain injury, increase the chance of survival and reduce the severity of possible long-term disability if started within 6 hours of birth |
| Cooling | • Your baby will continue to receive standard intensive care support
 • Your baby's temperature will be slowly lowered and kept between 33 and 34 °C for 72 hours. Cooling will be achieved by exposing your baby to the ambient air temperature and with the use of cool gel packs if required
 • Your baby's temperature and other vital signs will be closely monitored throughout the process. If your baby shows any signs of discomfort during cooling he/she will be prescribed medication to reduce this
 • After 72 hours of cooling your baby will be gradually rewarmed to a temperature of 37 °C |
| Research | • Research is ongoing on the best ways to prevent, treat and care for newborn babies with brain injuries
 • You may be asked to consider participating in research trials that are happening at this time |
Appendix B: Sarnat and Sarnat staging system

The staging system proposed by Sarnat and Sarnat10 is often useful in classifying the degree of encephalopathy. Stages 1, 2, and 3 correlate with the descriptions of mild, moderate, and severe encephalopathy described by Zanelli et al.2

<table>
<thead>
<tr>
<th></th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of consciousness</td>
<td>Hyperalert</td>
<td>Lethargic or obtund</td>
<td>Stuporous</td>
</tr>
<tr>
<td>Neuromuscular control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle tone</td>
<td>Normal</td>
<td>Mild hypotonia</td>
<td>Flaccid</td>
</tr>
<tr>
<td>Posture</td>
<td>Mild distal flexion</td>
<td>Strong distal flexion</td>
<td>Intermittent decerebration</td>
</tr>
<tr>
<td>Stretch reflexes</td>
<td>Overactive</td>
<td>Overactive</td>
<td>Decreased or absent</td>
</tr>
<tr>
<td>Segmental myoclonus</td>
<td>Present</td>
<td>Present</td>
<td>Absent</td>
</tr>
<tr>
<td>Complex reflexes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suck</td>
<td>Weak</td>
<td>Weak or absent</td>
<td>Absent</td>
</tr>
<tr>
<td>Moro</td>
<td>Strong, low threshold</td>
<td>Weak, incomplete, high threshold</td>
<td>Absent</td>
</tr>
<tr>
<td>Oculo vestibular</td>
<td>Normal</td>
<td>Overactive</td>
<td>Weak or absent</td>
</tr>
<tr>
<td>Tonic neck</td>
<td>Slight</td>
<td>Strong</td>
<td>Absent</td>
</tr>
<tr>
<td>Autonomic function</td>
<td>Generalised sympathetic</td>
<td>Generalised parasympathetic</td>
<td>Both systems depressed</td>
</tr>
<tr>
<td>Pupils</td>
<td>Mydriasis</td>
<td>Miosis</td>
<td>Variable, often unequal, poor light reflex</td>
</tr>
<tr>
<td>Heart rate</td>
<td>Tachycardia</td>
<td>Bradycardia</td>
<td>Variable</td>
</tr>
<tr>
<td>Bronchial and salivary secretions</td>
<td>Sparse</td>
<td>Profuse</td>
<td>Variable</td>
</tr>
<tr>
<td>Gastrointestinal motility</td>
<td>Normal or decreased</td>
<td>Increased, diarrhoea</td>
<td>Variable</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seizures</td>
<td>None</td>
<td>Common, focal or multifocal</td>
<td>Uncommon (excluding decerebration)</td>
</tr>
<tr>
<td>Electroencephalogram findings</td>
<td>Normal (awake)</td>
<td>Early: low-voltage continuous delta and theta</td>
<td>Early: periodic pattern with isopotential phases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Later: periodic pattern (awake)</td>
<td>Later: totally isopotential</td>
</tr>
<tr>
<td>Seizures</td>
<td>None</td>
<td>Common, focal or multifocal</td>
<td>Uncommon (excluding decerebration)</td>
</tr>
<tr>
<td>Duration</td>
<td>Less than 24 hours</td>
<td>2–14 days</td>
<td>Hours to weeks</td>
</tr>
</tbody>
</table>
Appendix C: Therapeutic hypothermia: cooling and rewarming

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| **Clinical standard** | • Commence cooling within 6 hours of birth before secondary reperfusion injury begins
 • Cooling is continued for 72 hours
 • Achieve core temperature between 33.0 and 34.0 °C by 2 hours from commencement |
| **Clinical practice** | • Achieve cooling primarily by passive methods:
 o Nurse the baby on an open care system and turn the radiant warmer off
 o Nurse the baby naked with only a nappy on and no sheepskin, water bags, cloth or occlusive wraps
 o Refer to Appendix D: Flowchart: Passive cooling
 • Active cooling: use a cooling and rewarming bed if available
 • If the baby is ventilated maintain the humidifier temperature at the temperature recommended by the manufacturer |
| **Active cooling option 1:** | • The preferred method: initiate servo-controlled cooling and rewarming mattress as programmed or as per manufacturer instructions |
| **Active cooling option 2:** | • The preferred method: initiate servo-controlled cooling and rewarming mattress as programmed or as per manufacturer instructions |
| **Manual cooling** | • Apply the cool pack to the back of the neck and head, and across the torso as required
 • If the rectal temperature is:
 o Less than 34.5 °C: remove one/some/all cool packs
 o Less than 34.0 °C: remove all cool packs
 o Less than 33.0 °C: manually adjust the heater output on the radiant warmer to regain a core temperature between 33 and 34 °C
 • The cool pack temperature guide is 10 °C (acquire from the fridge, never the freezer)
 • Cover cool packs with a cotton/other appropriate cover
 • Observe skin in contact with cool packs every 15 minutes and document this observation
 o Subcutaneous fat necrosis can occur from tissue exposure to excessively cold temperatures |
| **Ceasing cooling prior to 72 hours** | • Indications to consider ceasing cooling prior to 72 hours include:
 o Life threatening coagulopathy
 o Uncontrolled pulmonary hypertension
 o A cardiac arrhythmia requiring treatment (excluding sinus bradycardia)
 o Deterioration in condition which leads to redirected/palliative care based on discussions with parents and the treating team |
| **Sedation/pain relief** | • If the baby shows any signs of distress or there is excessive shivering causing difficulties maintaining the desired baby temperature, consider:
 o Low dose morphine and/or midazolam
 o Paracetamol:
 ▪ Preferably administer per rectum
 ▪ The presence of the rectal thermistor sensor does not inhibit administration
 ▪ May also be administered intravenously
 • Metabolism of most drugs, including analgesics and sedatives, is altered by hypothermia and NICU-specific guidelines or consultation with a neonatal pharmacist is advised |
| **Feeding** | • Withhold enteral feeds due to the risk of gut compromise and/or necrotising enterocolitis |
| **Risks** | • Therapeutic hypothermia does not appear to affect the incidence or severity of most typical multi-organ system complications found in asphyxiated babies
 • Risks may include:
 o Subcutaneous fat necrosis
 o Thrombocytopenia
 o Sinus bradycardia: transient and reversible with warming
 • Due to the potential for accumulation and toxicity, carefully administer all pharmacological agents according to clinical need |

50

Rewarming

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| **Principles of rewarming** | - After 72 hours of cooling, rewarm baby at a rate not exceeding 0.5 °C every 2 hours
- The target rectal temperature is 37 °C
- Babies will take 12–16 hours to rewarm
- Rectal probe measurements may cease after the baby has maintained the target rectal temperature of 37 °C for at least 6 hours
- Prevent rebound hyperthermia which is detrimental in moderate to severe HIE
- Ensure aEEG is continued for total of 96 hours (or EEG, ideally accompanied by video) as the rewarming period is a high risk interval for recurrence of seizures |
| **Rewarming option 1:** Cooling and warming mattress | - Rewarm baby on the proprietary servo-controlled cooling and rewarming mattress as programmed or as per manufacturer instructions
- Document, every 30 minutes, rewarming times, increments and temperatures
- Upon reaching a rectal temperature of 37 °C:
 o Attach a skin temperature probe to the baby, connect to open care system and set skin Infant Servo Control (ISC) mode to desired temperature
 o Connect rectal temperature probe to the relevant monitoring system for ongoing continuous display |
| **Rewarming option 2:** Manual rewarming | - Nurse the baby on ISC mode
 o The lowest setting that can be achieved on some ISC systems is 34.5 °C, therefore carefully manage manual heater increases prior to reaching 34.5 °C
 o Increase the desired set temperature by 0.1 °C every 20 minutes
 ▪ Over the two hour period, this regimen provides for five 0.1 °C increases with one 20 minute period at the end of the two hour time frame of no temperature increase before resuming further temperature increases
- Document, every 20 minutes, rewarming times, increments and temperatures
 o A specialised observation form for this purpose is suggested |
Appendix D: Flowchart: Passive cooling

Baby meets therapeutic hypothermia criteria
[Refer to Checklist/Flow chart: Criteria for therapeutic hypothermia]

Commence passive cooling

- Nurse baby, wearing only a nappy, on an open care system with radiant warmer turned off
- Start continuous core (rectal) temperature monitoring and record every 30 minutes
 - If this is not available: measure and document the axilla temperature every 20 minutes

Assess baby’s temperature
- Aim to achieve therapeutic range within 2 hours of commencing cooling

Temperature < 33 °C
- Rewarm at 0.5 °C/hour until at 33–34 °C
- Put hat on baby
- Turn open care system onto lowest setting and adjust accordingly

Target temperature 33–34 °C
- Maintain temperature within this range
- May need to:
 - Put hat on baby
 - Turn open care system onto lowest setting and adjust accordingly

Temperature > 34 °C
- If the target temperature is not achieved after 2 hours, or the baby’s temperature is not dropping by at least 0.5 °C each 30 minutes towards target temperature, further consultation with a neonatologist is required
 - Active cooling may be indicated

Document baby’s rectal temperature every 30 minutes or axilla temperature every 20 minutes

>: greater than, <: less than

Queensland Clinical Guideline: Hypoxic-ischaemic encephalopathy (HIE) F17.11-4-V7-R21
Acknowledgements

Queensland Clinical Guidelines gratefully acknowledge the contribution of Queensland clinicians and other stakeholders who participated throughout the guideline development process particularly:

Working Party Clinical Lead
Dr Lucy Cooke, Clinical Director, Neonatal Critical Care Unit, Mater Health Services

QCG Program Officer
Ms Lyndel Gray, Clinical Nurse Consultant

Working Party Members
Miss Tracey Bulow, Advanced Practice Physiotherapist, Neonatal Critical Care Unit, Mater Health Services
Mrs Sara Carter, A/Educator, Women and Newborn Services, Royal Brisbane and Women’s Hospital
Dr Mark Davies, Neonatologist, Grantley Stable Neonatal Unit, Royal Brisbane and Women’s Hospital
Dr Paul Devenish-Meares, Obstetrician, Mater Health Services
Dr John Gavranich, Clinical Director, Coordinated Care Stream, Ipswich Hospital
Ms Leah Hardiman, Consumer, President, Maternity Choices Australia
Dr Timothy Hong, Neonatologist, Newborn Care Unit, Gold Coast University Hospital
Ms Karen Hose, Neonatal Nurse Practitioner, Women’s and Newborn Services, Royal Brisbane and Women’s Hospital
Dr Arif Huq, Staff Specialist, Paediatrics and Neonatology, Bundaberg Hospital
Dr Luke Jardine, Neonatologist, Neonatal Critical Care Unit, Mater Health Services
Mrs Kathryn Kielly, Midwife, Logan Hospital; and Consumer, Hope for HIE
Dr Pieter Koorts, A/Director, Grantley Stable Neonatal Unit, Royal Brisbane and Women’s Hospital
Miss Christine Latimer, Clinical Facilitator, Neonatal Unit, The Townsville Hospital
Associate Professor Helen Liley, Senior Staff Specialist, Neonatal Critical Care Unit, Mater Health Services
Mrs Hayley McGillivray, Clinical Nurse, Special Care Nursery, Hervey Bay Hospital
Ms Naoni Ngenda, Physiotherapist, Grantley Stable Neonatal Unit, Royal Brisbane and Women’s Hospital
Ms Alecia Staines, Consumer, Maternity Choices Australia
Ms Cathy van den Berg, Nurse Unit Manager, Newborn Care Unit, Gold Coast University Hospital

Queensland Clinical Guidelines Team
Associate Professor Rebecca Kimble, Director
Ms Jacinta Lee, Manager
Ms Lyndel Gray, Clinical Nurse Consultant
Dr Brent Knack, Program Officer
Ms Stephanie Sutherns, Clinical Nurse Consultant
Steering Committee, Queensland Clinical Guidelines

Funding
This clinical guideline was funded by Queensland Health, Healthcare, Innovation and Research Branch.