Primary postpartum haemorrhage
Flow Chart: Initial response to PPH

Resuscitation

Assessment
- Rate/volume of bleeding
- Lie flat, oxygen 15 L/minute, keep warm
- Continuous heart rate and SpO₂, 15 minutely BP and temperature
- Ensure routine third stage oxytocic given
- 4Ts (tissue, tone, trauma, thrombin)

Urgent bloods
- FBC, Full chemistry profile (Chem20), coagulation profile, blood gas,
- X-match if none current with laboratory
- ROTEM® /TEG® if available
- POC pathology (iSTAT, Hemocue) if no onsite laboratory

Initial fluid resuscitation
- Consider coagulation profile CONCURRENTLY during management
- Urgent bloods
- Assessment

Initial fluid resuscitation (use warmed IV fluids/warming devices)
- IV cannula (x 2) 14–16G (consider intraosseous if unattainable)

Avoid crystalloid IV > 1–2 L
- Limit synthetic colloid use (if used then < 1.5 L)
- Consider early administration (within 3 hours)
- If indicated, 2 units of RBC (O negative or group specific)
- ID – monitor output and maintain accurate fluid balance

- Apply CCT and attempt delivery
- Transfer to OT if:
 - Placenta adherent/trapped
 - Coteloydon and membranes missing

- Massage fundus/expel uterine clots
- Empty bladder (IDC may be required)
- Assess uterus intact
- Repair – secure apex
- Transfer to OT if unable to access site

- Inspect cervix, vagina, perineum
- Clamp obvious arterial bleeders
- Repair – secure apex
- Transfer to OT if unable to access site

- Monitor 30–60 minutely FBC, ABG, coagulation profile, ionised calcium

- Anestheziation: amniotic fluid embolism, Puerperal haemotoma, Non-genital cause (e.g. subcapsular liver rupture, AFoE)

- Assess for:
 - Uterine rupture or inversion
 - Puerperal haemotoma
 - Non-genital cause (e.g. subcapsular liver rupture, AFoE)

- Repeat 4T assessment

Surgical procedures

Coagulopathy may influence surgical decisions
- Consider future fertility if possible

Tissue
- Manual removal + currettage

Tone
- Intrauterine balloon tamponade
- Laparotomy:
 - Interim aortic compression
 - B-Lynch compression suture
 - Bilateral uterine artery ligation
 - Angiographic embolisation
 - Hysterectomy (consider early)

Trauma
- Optimise exposure with retractors
- Inspect cervix, vagina, perineum
- Assess uterus intact
- Repair – secure apex

Thrombin
- Intrauterine balloon tamponade
- Bilateral uterine artery ligation
- Angiographic embolisation or
- Hysterectomy (consider early)

Tissue
- Manual removal + currettage

Tone
- Intrauterine balloon tamponade
- Bilateral uterine artery ligation
- Angiographic embolisation or
- Hysterectomy (consider early)

Trauma
- Optimise exposure with retractors
- Inspect cervix, vagina, perineum
- Assess uterus intact
- Repair – secure apex

Unknown cause
- Laparotomy – EUA

- Bimanual compression
- Transfer to OT or to higher level facility as relevant
- Refer to MHP flowchart

Monitor:
- Vital signs – assess for shock
- Fundal tone
- Vaginal blood loss
- Haemoglobin

Transfer as required to:
- Postnatal area
- Intensive care/high dependency
- Higher level facility

Postnatal care:
- Provide psychological support:
 - Treat anaemia
 - Administer VTE prophylaxis
 - Monitor for DVT/PE
 - Follow-up and self-care advice

Refer to online version, destroy printed copies after use
Flow Chart: Massive haemorrhage protocol (MHP)

MHP activation criteria

Actively bleeding and any of:
- 4 units RBC in < 4 hours plus haemodynamic instability
- Estimated blood loss of > 2.5 L
- Clinical or laboratory signs of coagulopathy

OR in lower resource settings as per local protocol

Lead clinician activates MHP

- Notify usual/nearest laboratory/blood bank
- Identify time frame for product delivery
- Inform lab if using ROTEM® or TEG®
- Contact haematologist/request other assistance
- Contact RSQ 1300 799 127 early (as relevant to service) and plan definitive care

Blood components as per local ROTEM®/TEG® algorithm

MHP PACK 1
- RBC 4 units
- Fibrinogen concentrate or cryoprecipitate to maintain fibrinogen > 2.5 g/L
- FFP 2 units

MHP PACK 2
- RBC 4 units
- Fibrinogen concentrate or cryoprecipitate to maintain fibrinogen > 2.5 g/L
- FFP 2 units
- Platelets 1 adult dose
- If ionised calcium < 1.1 mmol/L, give 10% calcium gluconate 10 mL IV

Follow local protocols

- POC pathology if available (e.g. i-STAT, Hemocue)
- Give as available:
 1. RBC (2 units O negative or group specific)
 2. Fibrinogen concentrate IV @ 70 mg/kg body weight
 3. Platelets 1 adult dose
 4. FFP 2 units
 5. Crystalloids (up to 1–2 L)
 6. Colloids (< 1.5 L)

Medical Officers (call senior asap) | LAB | Theatre

APPT: activated partial thromboplastin time, ASAP: as soon as possible, FBC: full blood count, FFP: fresh frozen plasma, INR: international normalised ratio, IV: intravenous, MHP: massive haemorrhage protocol, POC: point of care, PPH: postpartum haemorrhage PT: prothrombin time, RBC: red blood cells, ROTEM®/TEG®: types of blood clotting analysers, <: less than, >: greater than

Refer to online version, destroy printed copies after use
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABG</td>
<td>Arterial blood gas</td>
</tr>
<tr>
<td>APTT</td>
<td>Activated partial thromboplastin time</td>
</tr>
<tr>
<td>CCT</td>
<td>Controlled cord traction</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CS</td>
<td>Caesarean section</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>FBC</td>
<td>Full blood count</td>
</tr>
<tr>
<td>FFP</td>
<td>Fresh frozen plasma</td>
</tr>
<tr>
<td>GP</td>
<td>General Practitioner</td>
</tr>
<tr>
<td>IOL</td>
<td>Induction of labour</td>
</tr>
<tr>
<td>INR</td>
<td>International normalised ratio</td>
</tr>
<tr>
<td>LAM</td>
<td>List of approved medicines (QH)</td>
</tr>
<tr>
<td>MHP</td>
<td>Massive haemorrhage protocol (also known as massive transfusion protocol)</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>OT</td>
<td>Operating theatre</td>
</tr>
<tr>
<td>POC</td>
<td>Point of care</td>
</tr>
<tr>
<td>PPH</td>
<td>Postpartum haemorrhage</td>
</tr>
<tr>
<td>PT</td>
<td>Prothrombin time</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cells</td>
</tr>
<tr>
<td>RR</td>
<td>Risk ratio</td>
</tr>
<tr>
<td>RSQ</td>
<td>Retrieval Services Queensland</td>
</tr>
<tr>
<td>TGA</td>
<td>Therapeutic Goods Administration</td>
</tr>
<tr>
<td>VE</td>
<td>Vaginal examination</td>
</tr>
<tr>
<td>VTE</td>
<td>Venous thromboembolism</td>
</tr>
</tbody>
</table>

Definition of terms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Chemistry profile</td>
<td>Also referred to as a ‘Chem20’ in Auslab. Includes: sodium, potassium,</td>
</tr>
<tr>
<td></td>
<td>chloride, bicarbonate, creatinine, urea, glucose, total protein, albumin,</td>
</tr>
<tr>
<td></td>
<td>total bilirubin, direct bilirubin, urate, alt, AST, ALP, GGT, LD, calcium,</td>
</tr>
<tr>
<td></td>
<td>phosphate, magnesium, anion gap, osmolality, urea/creatinine ratio, globulin,</td>
</tr>
<tr>
<td></td>
<td>albumin-corrected calcium, eGFR (patients over 18 years).</td>
</tr>
<tr>
<td>Critical bleeding</td>
<td>Major haemorrhage that is life threatening and likely to result in the need</td>
</tr>
<tr>
<td></td>
<td>for massive transfusion.</td>
</tr>
<tr>
<td>Massive transfusion</td>
<td>In adults, massive transfusion may be defined as a transfusion of half of</td>
</tr>
<tr>
<td></td>
<td>one blood volume in four hours, or more than one blood volume in 24 hours</td>
</tr>
<tr>
<td></td>
<td>(adult blood volume is approximately 70 mL/kg). In a near term pregnant</td>
</tr>
<tr>
<td></td>
<td>woman volume is approximately 100 mL/kg due to physiological increase in</td>
</tr>
<tr>
<td></td>
<td>blood volume.</td>
</tr>
<tr>
<td>Obstetrician</td>
<td>Local facilities may, as required, differentiate the roles and responsibilities</td>
</tr>
<tr>
<td></td>
<td>assigned in this document to an ‘obstetrician’ or ‘senior obstetrician’</td>
</tr>
<tr>
<td></td>
<td>according to their specific practitioner group requirements; for example to</td>
</tr>
<tr>
<td></td>
<td>General Practitioner Obstetricians, Specialist Obstetricians, Consultants,</td>
</tr>
<tr>
<td></td>
<td>Senior Registrars, Obstetric Fellows or other members of the team as</td>
</tr>
<tr>
<td></td>
<td>required.</td>
</tr>
<tr>
<td>Secondary postpartum haemorrhage</td>
<td>Excessive bleeding occurring between 24 hours post birth and 6 weeks post</td>
</tr>
<tr>
<td></td>
<td>birth.</td>
</tr>
</tbody>
</table>
Table of Contents

1. Introduction .. 8
 1.1 Definition ... 8
 1.2 Incidence of PPH in Queensland ... 8
 1.3 Aetiology ... 9
 1.4 Clinical standards .. 9

2. Prophylaxis ... 10
 2.1 Risk factors ... 10
 2.2 Antenatal risk management .. 11
 2.2.1 Transfusion not an option .. 12
 2.3 Intrapartum risk management ... 13
 2.3.1 Third stage management ... 14
 2.3.2 Syntometrine ... 15
 2.3.3 Carbetocin ... 15
 2.3.4 Misoprostol for secondary prevention .. 16
 2.4 Fourth stage monitoring ... 16
 2.5 Postnatal risk management ... 17

3. Treatment ... 18
 3.1 Estimation of blood loss ... 18
 3.2 Point of care blood clotting analysers ... 18
 3.3 Resuscitation .. 19
 3.3.1 Tranexamic acid .. 20
 3.3.2 Support during PPH .. 20
 3.4 Tone .. 21
 3.4.1 First line pharmacological therapy for uterine atony .. 21
 3.4.2 Second line pharmacological therapy for uterine atonia .. 22
 3.4.3 Intractable bleeding ... 23
 3.5 Trauma .. 24
 3.5.1 Genital trauma ... 24
 3.5.2 Cervical trauma .. 24
 3.5.3 Uterine rupture ... 25
 3.5.4 Uterine inversion .. 26
 3.6 Tissue .. 27
 3.7 Thrombin .. 28
 3.7.1 Target results ... 28
 3.7.2 Coagulopathy principles ... 29
 3.7.3 Cross matched RBC not available ... 29

4. Massive haemorrhage .. 30

5. Postnatal care after PPH ... 31
 References .. 32
 Appendix A: Uterine atonia interventions ... 35
 Appendix B: PPH drug and blood products .. 36
 Acknowledgements .. 37
List of Tables
Table 1. Postpartum haemorrhage definitions .. 8
Table 2. Incidence of PPH in Queensland... 8
Table 3. Aetiology of PPH.. 9
Table 4. Clinical standards .. 9
Table 5. Risk factors for PPH .. 10
Table 6. Antenatal risk... 11
Table 7. Blood products declined .. 12
Table 8. Intrapartum risk... 13
Table 9. Third stage management.. 14
Table 10. Syntometrine.. 15
Table 11. Carbetocin... 15
Table 12. Secondary prevention with misoprostol .. 16
Table 13. Monitoring... 16
Table 14. Postnatal risk management ... 17
Table 15. Clinical findings in PPH ... 18
Table 16. Point of care blood clotting analysers .. 18
Table 17. Resuscitation.. 19
Table 18. Tranexamic acid .. 20
Table 19. Support during PPH... 20
Table 20. Oxytocin.. 21
Table 21. Ergometrine .. 21
Table 22. Misoprostol... 21
Table 23. 15-methyl prostaglandin F2 alpha (carboprost) ... 22
Table 24. Intractable bleeding ... 23
Table 25. Genital trauma... 24
Table 26. Cervical trauma .. 24
Table 27. Uterine rupture... 25
Table 28. Uterine inversion.. 26
Table 29. Tissue.. 27
Table 30. Blood products ... 28
Table 31. Laboratory values... 28
Table 32. Coagulopathy principles .. 29
Table 33. Blood cell replacement... 29
Table 34. Example MHP bleeding protocol ... 30
Table 35. Postnatal care... 31
1 Introduction

Primary postpartum haemorrhage (PPH) is the most common form of obstetric haemorrhage and is a leading cause of maternal morbidity and mortality in Australia and worldwide. In developed countries there is a trend of increasing PPH that has not been completely explained by the changing risk profile of women. Obstetric haemorrhage (which includes antepartum haemorrhage) was responsible for 12 (11%) of Australian maternal deaths in 2008–2012 (a maternal mortality ratio of 0.8 per 100,000).

1.1 Definition

Although there is no single definition, PPH is termed as excessive bleeding in the first 24 hours post birth. In an emergent situation, diagnosis most commonly occurs through estimation of blood loss volume and changes in the haemodynamic state.

Table 1. Postpartum haemorrhage definitions

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood loss volume</td>
<td>• After vaginal birth: 500 mL or more<sup>4</sup></td>
</tr>
<tr>
<td></td>
<td>• After caesarean section (CS): 1000 mL or more<sup>9</sup></td>
</tr>
<tr>
<td></td>
<td>• Severe: 1000 mL or more<sup>10,11</sup></td>
</tr>
<tr>
<td></td>
<td>• Very severe: 2500 mL or more<sup>10</sup></td>
</tr>
<tr>
<td></td>
<td>• Queensland perinatal data collection, categorises PPH blood volume as</td>
</tr>
<tr>
<td></td>
<td>500–999 mL, 1000–1499 mL, 1500 mL or more</td>
</tr>
<tr>
<td>Haemodynamic compromise</td>
<td>• Due to frequent underestimation of blood loss<sup>11</sup>, PPH may first</td>
</tr>
<tr>
<td></td>
<td>be detected through haemodynamic compromise<sup>3</sup></td>
</tr>
<tr>
<td></td>
<td>• A healthy pregnant woman will only show mild signs of shock after a</td>
</tr>
<tr>
<td></td>
<td>blood loss of 1000 mL<sup>12</sup></td>
</tr>
<tr>
<td></td>
<td>• Conversely compromise may occur earlier in women with:</td>
</tr>
<tr>
<td></td>
<td>• Gestational hypertension with proteinuria</td>
</tr>
<tr>
<td></td>
<td>• Anaemia</td>
</tr>
<tr>
<td></td>
<td>• Dehydration</td>
</tr>
<tr>
<td></td>
<td>• Small stature</td>
</tr>
<tr>
<td>Haematocrit</td>
<td>• Retrospectively diagnosed by a 10% decline in postpartum haematocrit</td>
</tr>
<tr>
<td></td>
<td>levels<sup>9</sup></td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>• Australian Council of Healthcare Standards PPH indicator<sup>13</sup></td>
</tr>
<tr>
<td></td>
<td>• Blood transfusion required after a massive blood loss greater than or</td>
</tr>
<tr>
<td></td>
<td>equal to 1000 mL or in response to a postpartum haemoglobin (Hb) of</td>
</tr>
<tr>
<td></td>
<td>less than 80 g/L</td>
</tr>
<tr>
<td>ICD-10</td>
<td>• Haemorrhage after delivery of fetus or infant and includes sub-</td>
</tr>
<tr>
<td></td>
<td>classifications of<sup>14</sup>:</td>
</tr>
<tr>
<td></td>
<td>• Third stage: haemorrhage associated with retained, trapped or</td>
</tr>
<tr>
<td></td>
<td>adherent placenta</td>
</tr>
<tr>
<td></td>
<td>• Other immediate: haemorrhage following delivery of placenta,</td>
</tr>
<tr>
<td></td>
<td>postpartum haemorrhage (atonic)</td>
</tr>
<tr>
<td></td>
<td>• Delayed and secondary: haemorrhage associated with retained portions</td>
</tr>
<tr>
<td></td>
<td>of placenta or membranes</td>
</tr>
<tr>
<td></td>
<td>• Postpartum coagulation defects: postpartum afibrinogenemia or</td>
</tr>
<tr>
<td></td>
<td>fibrinolysis</td>
</tr>
</tbody>
</table>

1.2 Incidence of PPH in Queensland

Table 2. Incidence of PPH in Queensland

<table>
<thead>
<tr>
<th></th>
<th>PPH (mL)</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total giving birth</td>
<td></td>
<td>61,125</td>
<td>62,667</td>
<td>62,182</td>
<td>62,811</td>
<td>60,942</td>
<td>61,872</td>
</tr>
<tr>
<td>Vaginal birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500–999</td>
<td></td>
<td>1,517</td>
<td>1,640</td>
<td>1,591</td>
<td>1,813</td>
<td>1,953</td>
<td>2,094</td>
</tr>
<tr>
<td>≥ 1000</td>
<td></td>
<td>701</td>
<td>*811</td>
<td>1,028</td>
<td>1,254</td>
<td>*1,327</td>
<td>*1,491</td>
</tr>
<tr>
<td>CS birth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500–999</td>
<td></td>
<td>1,517</td>
<td>1,640</td>
<td>1,591</td>
<td>1,813</td>
<td>1,953</td>
<td>2,094</td>
</tr>
<tr>
<td>≥ 1000</td>
<td></td>
<td>701</td>
<td>*811</td>
<td>1,028</td>
<td>1,254</td>
<td>*1,327</td>
<td>*1,491</td>
</tr>
<tr>
<td>PPH plus blood transfusion</td>
<td></td>
<td>257</td>
<td>312</td>
<td>285</td>
<td>433</td>
<td>554</td>
<td>625</td>
</tr>
</tbody>
</table>

*plus one PPH with volume not stated. Source: PDC data extracted July 2017
1.3 Aetiology
The common causes of PPH are referred to as the ‘Four T’s’. More than one cause may be present (e.g. tone and tissue)

Table 3. Aetiology of PPH

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tone (70%)</td>
<td>• Atonic uterus</td>
</tr>
<tr>
<td>Trauma (20%)</td>
<td>• Lacerations of the cervix, vagina and perineum</td>
</tr>
<tr>
<td></td>
<td>• Extension lacerations at CS</td>
</tr>
<tr>
<td></td>
<td>• Uterine rupture or inversion</td>
</tr>
<tr>
<td></td>
<td>• Non-genital tract trauma (e.g. subcapsular liver rupture)</td>
</tr>
<tr>
<td>Tissue (10%)</td>
<td>• Retained products, placenta (cotyledon or succenturiate lobe), membranes</td>
</tr>
<tr>
<td></td>
<td>or clots, abnormal placenta</td>
</tr>
<tr>
<td>Thrombin (< 1%)</td>
<td>• Coagulation abnormalities</td>
</tr>
</tbody>
</table>

1.4 Clinical standards

Table 4. Clinical standards

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency systems</td>
<td>• Establish local protocols and systems to facilitate¹:</td>
</tr>
<tr>
<td></td>
<td>  o A multidisciplinary response (e.g. medical emergency team (MET) call)</td>
</tr>
<tr>
<td></td>
<td>  o Massive haemorrhage protocol (MHP) activation</td>
</tr>
<tr>
<td></td>
<td>  o Access to emergency blood products and equipment</td>
</tr>
<tr>
<td></td>
<td>  o Relevant specialist advice</td>
</tr>
<tr>
<td>Low resource settings</td>
<td>• Where access to resources is limited (e.g. human resources, equipment, blood products, transfer options to higher level services):</td>
</tr>
<tr>
<td></td>
<td>  o Store and maintain access to fibrinogen concentrate (minimum 4 g)</td>
</tr>
<tr>
<td></td>
<td>    ▪ Rotate stock with larger facilities as required to minimise wastage due to expiration before use</td>
</tr>
<tr>
<td></td>
<td>  o Consider earlier triggers for activating requests for support (e.g. Retrieval Services Queensland (RSQ), blood products)</td>
</tr>
<tr>
<td></td>
<td>  o Refer to Section 2.3.4 Misoprostol for secondary prevention</td>
</tr>
<tr>
<td>Clinical education</td>
<td>• Adherence to evidence informed guidelines reduces maternal morbidity¹⁵</td>
</tr>
<tr>
<td></td>
<td>• Implement regular multidisciplinary practice drills⁴,¹⁵,¹⁶ to improve:</td>
</tr>
<tr>
<td></td>
<td>  o Identification of PPH (e.g. visual blood loss estimation, haemodynamic triggers)</td>
</tr>
<tr>
<td></td>
<td>  o Emergency response to PPH</td>
</tr>
<tr>
<td></td>
<td>  o Emergency response to maternal collapse</td>
</tr>
<tr>
<td></td>
<td>• Engage staff in critical incident debriefing after a PPH</td>
</tr>
<tr>
<td></td>
<td>• Support staff training in debriefing to support effective communications with the woman and her family</td>
</tr>
<tr>
<td>Reporting and documentation</td>
<td>• Contemporaneous and accurate documentation is a fundamental principle of healthcare delivery</td>
</tr>
<tr>
<td></td>
<td>• Refer to the National consensus statement: essential elements for recognising and responding to clinical deterioration¹⁷</td>
</tr>
<tr>
<td></td>
<td>• Notify of PPH via local adverse event reporting systems</td>
</tr>
<tr>
<td></td>
<td>• Use an approved maternity early warning tool, clinical pathway or proforma¹²</td>
</tr>
<tr>
<td></td>
<td>  o Standardises and records clinical response and care</td>
</tr>
<tr>
<td></td>
<td>  o Enables data collection and clinical audit</td>
</tr>
</tbody>
</table>
2 Prophylaxis

Although many women who have a PPH have no identifiable risk factors, early implementation of risk management strategies may improve early detection and treatment and so reduce PPH severity. Assess for risk factors during the antenatal, intrapartum and postpartum period in order to plan for risk mitigation.

2.1 Risk factors

The magnitude of risk attributable to each factor varies across reports and there may be unknown, interdependent and/or synergistic effects involved.

Table 5. Risk factors for PPH

<table>
<thead>
<tr>
<th>Antenatal risk factor</th>
<th>Detail of study</th>
<th>OR</th>
<th>95% CI</th>
<th>Aetiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased maternal age</td>
<td>≥ 35 years</td>
<td>2.0</td>
<td>1.90 to 2.20</td>
<td>Tone</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Asian</td>
<td>1.31</td>
<td>1.01 to 1.72</td>
<td>Trauma</td>
</tr>
<tr>
<td></td>
<td>Sub-Saharan Africa</td>
<td>1.54</td>
<td>1.10 to 2.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pacific Island</td>
<td>1.75</td>
<td>1.43 to 2.15</td>
<td></td>
</tr>
<tr>
<td>Pariarty</td>
<td>> 3</td>
<td>1.47</td>
<td>1.01 to 2.13</td>
<td>Tone</td>
</tr>
<tr>
<td>Prior uterine surgery</td>
<td>Not otherwise specified</td>
<td>3.38</td>
<td>1.60 to 7.14</td>
<td>Trauma</td>
</tr>
<tr>
<td>Previous PPH</td>
<td>> 1000 mL</td>
<td>3.3</td>
<td>3.0 to 3.51</td>
<td>Tone</td>
</tr>
<tr>
<td></td>
<td>> 1500 mL</td>
<td>6.42</td>
<td>3.9 to 10.62</td>
<td></td>
</tr>
<tr>
<td>Uterine fibroid</td>
<td>Fibroid tumours</td>
<td>2.43</td>
<td>1.99 to 2.97</td>
<td>Tone</td>
</tr>
<tr>
<td>Pre-eclampsia</td>
<td>Severe or HELLP</td>
<td>3.58</td>
<td>2.24 to 5.71</td>
<td>Thrombin</td>
</tr>
<tr>
<td>Obesity</td>
<td>BMI ≥ 30 kg/m²</td>
<td>1.38</td>
<td>1.18 to 1.61</td>
<td>Tone</td>
</tr>
<tr>
<td>Anticoagulants</td>
<td></td>
<td>4.66</td>
<td>2.81 to 7.73</td>
<td>Thrombin</td>
</tr>
<tr>
<td>Anaemia</td>
<td>Hb ≤ 9 g/dL</td>
<td>4.11</td>
<td>2.76 to 6.13</td>
<td>—</td>
</tr>
<tr>
<td>Artificial reproduct</td>
<td>iVF/ICSI</td>
<td>2.92</td>
<td>2.18 to 3.92</td>
<td>—</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Gestational diabetes</td>
<td>1.56</td>
<td>1.05 to 2.31</td>
<td>Tone</td>
</tr>
<tr>
<td>Multiple pregnancy</td>
<td></td>
<td>3.74</td>
<td>2.64 to 5.29</td>
<td>Tone</td>
</tr>
<tr>
<td>Polyhydramnios</td>
<td></td>
<td>1.9</td>
<td>1.2 to 3.1</td>
<td>Tone</td>
</tr>
<tr>
<td>Antepartum haemorrhage</td>
<td>Placenta praevia/abruption</td>
<td>3.8</td>
<td>3.0 to 4.82</td>
<td>Tissue</td>
</tr>
<tr>
<td>Drug induced atonia</td>
<td>Magnesium sulphate</td>
<td></td>
<td></td>
<td>Thrombin</td>
</tr>
<tr>
<td></td>
<td>Serotonergics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nifedipine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not available</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intrapartum risk factor</th>
<th>Detail of study</th>
<th>OR</th>
<th>95% CI</th>
<th>Aetiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction of labour</td>
<td></td>
<td>1.17</td>
<td>1.04 to 1.36</td>
<td>Tone</td>
</tr>
<tr>
<td>Prolonged second stage</td>
<td>Failure to progress</td>
<td>1.9</td>
<td>1.2 to 2.9</td>
<td>Tone</td>
</tr>
<tr>
<td>Prolonged third stage</td>
<td>≥ 30 mins</td>
<td>3.59</td>
<td>1.60 to 8.03</td>
<td>Tone</td>
</tr>
<tr>
<td>Retained placenta</td>
<td></td>
<td>4.1</td>
<td>3.1 to 5.24</td>
<td>Tissue</td>
</tr>
<tr>
<td>Instrumental vaginal birth</td>
<td>In labour</td>
<td>1.8</td>
<td>1.7 to 1.9</td>
<td>Trauma</td>
</tr>
<tr>
<td>CS birth</td>
<td>Without labour</td>
<td>1.7</td>
<td>1.5 to 2.0</td>
<td>Trauma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3</td>
<td>1.1 to 1.5</td>
<td>Trauma</td>
</tr>
<tr>
<td>Macrosomia</td>
<td>> 4.5 kg</td>
<td>1.77</td>
<td>1.20 to 2.60</td>
<td>Tone</td>
</tr>
<tr>
<td></td>
<td>> 4 kg</td>
<td>2.51</td>
<td>1.63 to 3.86</td>
<td></td>
</tr>
<tr>
<td>Perineal trauma</td>
<td>1st degree</td>
<td>1.70</td>
<td>1.219 to 2.40</td>
<td>Trauma</td>
</tr>
<tr>
<td></td>
<td>Episiotomy</td>
<td>2.07</td>
<td>1.57 to 2.73</td>
<td>Trauma</td>
</tr>
<tr>
<td></td>
<td>> 2nd degree tear</td>
<td>1.84</td>
<td>1.08 to 1.87</td>
<td>Trauma</td>
</tr>
<tr>
<td>Uterine rupture</td>
<td></td>
<td>23.1</td>
<td>20.4 to 26.2</td>
<td>Trauma</td>
</tr>
<tr>
<td>General anaesthesia</td>
<td></td>
<td>2.90</td>
<td>1.90 to 4.50</td>
<td>Tone</td>
</tr>
<tr>
<td>Infection</td>
<td>PROM</td>
<td>1.51</td>
<td>1.19 to 1.93</td>
<td>Tone/Thrombin</td>
</tr>
<tr>
<td></td>
<td>Temp > 38°C in labour</td>
<td>2.53</td>
<td>1.76 to 3.58</td>
<td></td>
</tr>
<tr>
<td>Non-cephalic presentation</td>
<td></td>
<td>1.6</td>
<td>1.5 to 1.6</td>
<td>Tone/Trauma</td>
</tr>
</tbody>
</table>

OR: odds ratio, CI: confidence interval
Antenatal risk management

Table 6. Antenatal risk

<table>
<thead>
<tr>
<th>Clinical aspects</th>
<th>Risk reduction measures</th>
</tr>
</thead>
</table>
| **Assessment** | - Recommend routine blood group and antibody testing
- If antenatal risk factors for PPH detected:
 o Highlight in the woman’s health record
 o Consult/refer to obstetrician as required
 o Involve the woman in a plan of care aimed at mitigating risk
- Discuss risks and potential interventions in the context of informed choice/consent as is relevant to the circumstances for example:
 o Use of blood and blood products
 o Medical and/or surgical interventions
 o Antenatal transfer (if indicated)
 o Potential to impact future fertility and birth |
| **Anaemia** | - Haemoglobin levels in pregnancy are not well defined—normal reference range in Queensland for 25–42 weeks gestation is 98–143 g/L
- Offer information about minimising anaemia
- Screen for anaemia as per routine antenatal schedule
- Investigate antenatal anaemia and optimise prebirth haemoglobin
- If iron deficiency anaemia, recommend oral iron supplementation as first line treatment
- If indicated (e.g. poor compliance or absorption of oral iron, close to term), consider parenteral iron therapy
- Routine use of erythropoiesis stimulating agents is not recommended
 o Consider only in selected women at high risk of substantial blood loss in combination with iron therapy
- If antenatal blood transfusion is required, ensure blood is cytomegalovirus (CMV) antibody negative (i.e. specify on request form) |
| **Maternal blood disorders** | - Involve specialist physician to:
 o Optimise/stabilise coagulation profile prior to birth
 o Advise on birth options (e.g. mode of birth)
- Seek anaesthetic opinion regarding options for analgesia during labour and birth |
| **Abnormal placentation** | - Determine placental site before birth, especially if previous CS
- Perform an ultrasonographic examination and/or magnetic resonance imaging
- If abnormal placentation, review by obstetrician is required as the risk of PPH is increased
- If placenta accreta or percreta, involve multidisciplinary team in preoperative planning
 o Timing and location of birth
 o Presence of consultant obstetrician and consultant anaesthetist
 o Type of anaesthesia
 o Availability of blood and blood products
 o Availability of postoperative intensive care bed
- Discuss plan of care and possible interventions with the woman prior to birth (e.g. hysterectomy, intervention radiology, leaving placenta in place) |
| **Induction of labour (IOL) and elective CS** | - Ensure routine blood results are less than three days old on admission (Full blood count (FBC), group and hold)
- For IOL, refer to Queensland Clinical Guideline: *Induction of labour* |
2.2.1 Transfusion not an option

Blood transfusion may not be a management option in some situations. This may be due to personal choice, religious and/or cultural beliefs, the presence of rare blood groups or complex antibodies, or the unavailability of blood products.1

Table 7. Blood products declined

<table>
<thead>
<tr>
<th>Aspects</th>
<th>Risk reduction measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jehovah Witnesses31</td>
<td>• Individuals vary in their choice and it is important to establish individual preferences
• Nearly all refusal transfusions of whole blood (including preoperative autologous donation and the primary blood components (red cells, platelets, white cells and unfractionated plasma)
• Many accept the transfusion of derivatives of primary blood components such as albumin solutions, cryoprecipitate, clotting factor concentrates (including fibrinogen concentrate) and immunoglobulins
• There is usually no objection to intraoperative cell salvage, apheresis, cardiac bypass or normovolaemic haemodilution providing the equipment is primed with non-blood fluids and continuity of connection to the woman is maintained
• Recombinant products such as erythropoiesis stimulating agents and granulocyte colony stimulating factors are acceptable as are pharmacological agents such as intravenous iron and tranexamic acid</td>
</tr>
<tr>
<td>Plan care</td>
<td>• Clarify with each woman and document what constitutes unacceptable treatment in relation to blood products and fluid resuscitation management32
• Discuss with the woman a plan of care that includes1:
 o Planned location of birth
 o Optimisation of pre-birth haemoglobin [refer to Table 6. Antenatal risk]
 o Identification of placental site [refer to Table 6. Antenatal risk]
 o Recommendation for active management of third stage of labour [refer to Section 2.3.1 Third stage management]
 o Recognition of the risk of uterine atonia associated with delay in first and second stages of labour12 and corrective treatments (e.g. intrapartum oxytocin infusion6,22 and assisted/operative birth22)
 o Risks and benefits of potential management options
 o Recommendation to complete an Advanced Health Directive32 and placement of a certified copy in the medical record
• If the woman declines blood products, follow local documentation protocols (e.g. specific consent forms, stickers, or chart notations)</td>
</tr>
<tr>
<td>Intrapartum</td>
<td>• At the onset of labour, recommend review by a consultant obstetrician and anaesthetist
• Consider at an early stage pharmacological, mechanical and surgical procedures16
• Hysterectomy is the definitive procedure to minimise life-threatening haemorrhage when transfusion is not an option1
• If CS required and/or high risk of PPH consider (as is available at local facility):
 o Interventional radiology
 o Reinfusion drains
 o Intraoperative cell salvaging (if skilled team available and acceptable as a treatment)1,16,32 particularly if blood volume loss is anticipated to result in transfusion</td>
</tr>
</tbody>
</table>
2.3 Intrapartum risk management

Table 8. Intrapartum risk

<table>
<thead>
<tr>
<th>Aspects</th>
<th>Risk reduction measures</th>
</tr>
</thead>
</table>
| **One or more risk factors for PPH** | • Assess for both antenatal and intrapartum risk factors on presentation for birth
 o If clinically significant antibodies present, request cross-matched blood
 • Discuss with the woman a plan of care that encompasses:
 o IV access in active labour/CS
 ▪ Avoid (where possible) insertion of large bore catheters in areas of flexion and extension
 o FBC, group and hold
 o Prophylactic oxytocin[^12] [refer to Section 2.3.1 Third stage management] |
| **Risk of chorioamnionitis** | • Chorioamnionitis can increase the risk of PPH
 • If temperature elevated during labour increase frequency of monitoring and clinical surveillance for PPH
 • Follow local protocols for management of chorioamnionitis or refer to Queensland Clinical Guidelines *Preterm labour*[^23] |
| **Vaginal birth** | • Increased length of first[^34] and/or active second stage[^35,38] are associated with increased risk of PPH
 o Take into account each woman’s risk profile for PPH when recommending care during labour
 • If vaginal birth after CS (VBAC), monitor for early signs of uterine rupture:
 o Refer to Section 3.5.3 Uterine rupture
 o Refer to Queensland Clinical Guideline: *Vaginal birth after caesarean section*[^37]
 • Individually assess the need for episiotomy
 o Refer to Queensland Clinical Guideline: *Perineal care*[^38] |
| **Emergency CS** | • Ensure IV access
 • Send *urgent* blood for:
 o FBC
 o Group and hold (if no valid group and hold available)
 o Cross match in selected circumstances if indicated
 • Experienced obstetrician required if:
 o Increased risk of extensions or lacerations (e.g. deep engagement of the fetal head, failed assisted vaginal birth)
 o Malpresentation
 o Evidence of abnormal coagulation
 o History of previous PPH or other significant risk factors
 • If risk of PPH, consider carbetocin 100 micrograms IV over one minute after birth of the baby[^39]
 o Refer to Table 11. Carbetocin |
| **Elective CS** | • Consider (as is available at local facility):
 o Intraoperative cell salvaging[^1,16,32] particularly if blood volume loss is anticipated to result in transfusion
 • If risk of PPH, consider carbetocin 100 micrograms IV over one minute after birth of the baby[^39]
 o Refer to Table 11. Carbetocin |
| **Not beneficial for PPH prophylaxis** | • Early or late cord clamping[^29]
 • Any particular maternal position during labour[^29]
 • Very early breastfeeding (nipple stimulation)[^29,40] |
2.3.1 Third stage management

The care provided during the third and fourth stages of labour may assist in the prevention or earlier detection and treatment of PPH. Refer to Queensland Clinical Guidelines: *Normal birth* for routine management of third stage.

Table 9. Third stage management

<table>
<thead>
<tr>
<th>Aspects</th>
<th>Risk reduction measures</th>
</tr>
</thead>
</table>
| Oxytocin | • Recommend prophylactic uterotonics to all women giving birth as they reduce the risk of PPH (oxytocin is the uterotonic of choice)
 o For vaginal birth oxytocin 10 International units IM
 o For CS birth oxytocin 5 International units IV over 1–2 minutes
 • Timing of administration
 o Before versus after the birth of the placenta showed no significant difference in incidence of PPH greater than 500 mL (RR 0.81; 95% CI 0.62 to 1.04) or greater than 1000 mL (RR 0.98, 95% CI 0.48 to 1.98)
 • Route of administration
 o One RCT (n=1075) compared IV oxytocin with IM oxytocin (10 international units). Reported significantly less PPH greater than 1000 mL (AOR 0.54, 95% CI 0.32 to 0.91) and blood transfusions (AOR 0.31, 95% CI 0.13 to 0.7) but not significantly less PPH greater than 500 mL |
| Cord clamping | • Delayed cord clamping (waiting at least 1–3 minutes after birth of the baby) is recommended for all births while initiating simultaneous essential newborn care
 o Routine early clamping of the cord is no longer recommended
 • Early versus late cord clamping
 o No significant difference in PPH greater than 500 mL (RR 1.17; 95% CI 0.94 to 1.44) or greater than 1000 mL (RR 1.04; 95% CI 0.65 to 1.65) |
| Controlled cord traction (CCT) | • Recommend CCT to all women following CS and vaginal birth
 o The relative contribution of CCT to reducing PPH in the bundle of care known as ‘active management/modified active management’ may be limited
 • Promote safety by:
 o Applying suprapubic counter pressure *prior* to CCT
 o Avoiding undue cord traction as there is a risk of cord snapping or uterine inversion
 o Directly supervising novice practitioners in this procedure |
| For women requesting physiological management | • Provide information about the risk and benefits of physiological versus active management of third stage
 • For women who choose physiological management recommend uterotonic if:
 o Excessive bleeding
 o Delay in placental birth greater than one hour
 o Woman requests to shorten third stage |
2.3.2 Syntometrine

Table 10. Syntometrine

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Risk reduction</th>
</tr>
</thead>
</table>
| **Evidence summary** | • For prophylactic oxytocin versus ergot alkaloids
 o No significant difference for PPH greater than 1000 mL⁴⁸ (RR 1.07, 95% CI 0.62 to 1.85)⁴²
 o A small reduction in risk of PPH greater than 500 mL⁴⁸ (RR 0.76, 95% CI 0.61 to 0.94)⁴² with oxytocin
 o Four fold increased risk of nausea (OR 4.07, 95% CI 3.43 to 4.84), vomiting (OR 4.92, 95% CI 4.03 to 6.00) and hypertension (OR 2.40, 95% CI 1.58 to 3.64)⁴⁹ with syntometrine
 • Syntometrine versus carbetocin⁴⁸—with carbetocin:
 o Reduction in PPH 1000 mL or more (RR 0.34, 95% CI 0.13 to 0.86) but not in PPH 500 mL or more (RR 0.96 95% CI 0.44 to 2.09)
 o Possible reduction in need for additional uterotonics (RR 0.54, 95% CI 0.30 to 1.00)
 o Significantly less nausea, vomiting, abdominal pain, shivering |
| **Recommendation** | • For low risk birth, routinely use oxytocin in preference to syntometrine⁵⁰
 • If risk of PPH:
 o Individually assess the potential benefit of a small reduction in blood loss versus the more common adverse effects associated with the use of syntometrine
 o Consider carbetocin in preference to syntometrine |

2.3.3 Carbetocin

Table 11. Carbetocin

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Risk reduction</th>
</tr>
</thead>
</table>
| **Evidence summary** | • Approved by the Therapeutic Goods Association (TGA) for the prevention of uterine atony and excessive bleeding following birth of the baby by caesarean section or vaginal birth
 • Stable at room temperatures (cold chain storage not required)
 • Following vaginal birth, carbetocin compared with oxytocin⁴⁸:
 o No difference in PPH 500 mL or more (RR 0.67, 95% CI 0.34 to 1.30) or 1000 mL or more (RR 0.68 95% CI 0.21 to 2.20)
 o Reduced need for further uterotonics (RR 0.54, 95% CI 0.30 to 0.99)
 • Following CS birth, carbetocin compared with oxytocin⁴⁸:
 o No difference in PPH 500 mL or more (RR 0.71, 95% CI 0.47 to 1.07) or 1000 mL or more (RR 0.62 95% CI 0.31 to 1.23)
 o Reduced need for further uterotonics (RR 0.45; 95% CI 0.27 to 0.74)
 • Has not been studied in women having a general anaesthetic³⁹ |
| **Recommendation** | • For low risk birth, routinely use oxytocin in preference to carbetocin
 • If storage at room temperature is considered a significant clinical advantage in the local context, carbetocin may be used
 • If risk of PPH, carbetocin may be considered for vaginal birth, or elective or emergency CS birth under epidural or spinal anaesthesia |
2.3.4 Misoprostol for secondary prevention

Table 12. Secondary prevention with misoprostol

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indications</td>
<td>• Oxytocin not available (e.g. due to unexpected birth in low resource setting, storage conditions inadequate)(^{51})</td>
</tr>
<tr>
<td></td>
<td>• Following routine third stage oxytocin if:</td>
</tr>
<tr>
<td></td>
<td>o Blood loss is greater than or equal to 350 mL(^{51})</td>
</tr>
<tr>
<td></td>
<td>o AND there is concern about treatment capability if PPH occurs (e.g. retrieval and transport considerations, low capability for medical and/or surgical management options)</td>
</tr>
<tr>
<td>Dose</td>
<td>• Misoprostol 800 micrograms sublingual once</td>
</tr>
<tr>
<td>Prescribing</td>
<td>• Does not replace routine oxytocin administration during third stage (if available)</td>
</tr>
<tr>
<td>considerations</td>
<td>• Not first line response to PPH [refer to Section 3 Treatment]</td>
</tr>
<tr>
<td></td>
<td>• Refer to Table 22. Misoprostol</td>
</tr>
</tbody>
</table>

2.4 Fourth stage monitoring

If risk factors for PPH are identified, monitor for one to two hours immediately after birth.

Table 13. Monitoring

<table>
<thead>
<tr>
<th>Observations</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>• 30 minutes</td>
</tr>
<tr>
<td>Pulse</td>
<td></td>
</tr>
<tr>
<td>Respirations</td>
<td>• 15 minutes</td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
</tr>
<tr>
<td>Oxygen saturation</td>
<td>• Once or as clinically indicated</td>
</tr>
<tr>
<td>Fundus</td>
<td>• 15 to 30 minutes</td>
</tr>
<tr>
<td>Lochia</td>
<td>• Be alert to a slow steady trickle after third stage of labour</td>
</tr>
<tr>
<td></td>
<td>• Visualise labia/perineum</td>
</tr>
<tr>
<td>Pain</td>
<td>• Initial assessment then as clinically indicated</td>
</tr>
<tr>
<td>Urine output</td>
<td>• Within the first two hours</td>
</tr>
<tr>
<td>Level of</td>
<td>• Once or as clinically indicated</td>
</tr>
<tr>
<td>consciousness</td>
<td></td>
</tr>
<tr>
<td>Oral intake</td>
<td>• Use clinical judgement about commencement and consider individual circumstances</td>
</tr>
<tr>
<td>Ongoing</td>
<td>• After first hour, continue as clinically indicated</td>
</tr>
<tr>
<td>observations a</td>
<td>• After CS: incorporate into routine postoperative observation</td>
</tr>
</tbody>
</table>
2.5 Postnatal risk management

Table 14. Postnatal risk management

<table>
<thead>
<tr>
<th>Aspects</th>
<th>Risk reduction measures</th>
</tr>
</thead>
</table>
| **Routine care** | • Prioritise placental inspection
 o If incomplete or in doubt, monitor woman and consult obstetrician
 • Facilitate prompt repair of genital trauma
 • Monitor women, including for uterine tone, every 15 to 30 minutes
 • Actively encourage/assist women to void soon after birth
 • Promote endogenous release of oxytocin by:
 o Keeping the woman warm and calm post birth
 o Assisting with early breast feeding (if preferred feeding method)
 o Facilitating skin to skin contact with baby |
| **If antenatal or intrapartum risk factor** | • Consider prophylactic oxytocin infusion post birth depending on individual circumstances
 • Observations every 15 minutes for first hour post birth
 • Clinical surveillance for early signs of hypovolemic shock
 • Seek medical review before discontinuing IV access in the first 24 hours post birth |
| **Early recognition of puerperal haematoma** | • Suspect if:
 o Unable to identify the cause of PPH (4 T’s) and/or
 o Hallmark sign is excessive or persistent pain
 ▪ Presentation will depend on site, volume and rate of haematoma formation
 ▪ Tachycardia is an early sign
 • Other signs are:
 o Abnormal vital signs (BP, pulse, respirations, perfusion, colour, cerebral perfusion)
 o Hypovolemic shock disproportionate to the revealed blood loss
 o Feelings of pelvic or rectal pressure
 o Urinary retention
 • Act promptly to:
 o Resuscitate as required [refer to 3.3 Resuscitation]
 o Perform vaginal/rectal examination to determine site and extent
 o Consider transfer to operating theatre (OT) for clot evacuation, primary repair and/or tamponade of blood vessels
 • Refer to Queensland Clinical Guideline: Perineal care³⁸ |
3 Treatment

Major blood loss can develop rapidly around the time of giving birth in the absence of haemodynamic compromise. Therefore; close monitoring of all women and early recognition and rapid response, are critical.¹

3.1 Estimation of blood loss

Visual estimation of blood loss often leads to underestimation.⁵² Factors other than volume such as nature and speed of blood loss²⁹ and clinical findings due to hypovolemic shock can also guide blood loss estimation¹¹,¹² and contribute to decision making.⁵³ Consider also:

- Weighing bloody linen, swabs and drapes¹¹
- Pictorial guides to assist staff to estimate blood loss
- Clinical simulation and collaborative practice models

Table 15. Clinical findings in PPH

<table>
<thead>
<tr>
<th>Blood loss (mL)</th>
<th>Systolic blood pressure</th>
<th>Signs and symptoms</th>
<th>Degree of shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>500–1000</td>
<td>Normal</td>
<td>Palpitations, dizziness,</td>
<td>Compensated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tachycardia</td>
<td></td>
</tr>
<tr>
<td>1000–1500</td>
<td>Slight decrease</td>
<td>Weakness, sweating,</td>
<td>Mild</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tachycardia</td>
<td></td>
</tr>
<tr>
<td>1500–2000</td>
<td>Marked decrease</td>
<td>Restlessness, pallor,</td>
<td>Moderate</td>
</tr>
<tr>
<td>(70–80 mm Hg)</td>
<td></td>
<td>oliguria</td>
<td></td>
</tr>
<tr>
<td>2000–3000</td>
<td>Profound decrease</td>
<td>Collapse, air hunger, anuria</td>
<td>Severe</td>
</tr>
<tr>
<td>(50–70 mmHg)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Adapted from Bonnar, J. Bailliere's Clinical Obstetrics and Gynaecology Vol. 14, No. 1, pp 1–18, 2000

3.2 Point of care blood clotting analysers

Table 16. Point of care blood clotting analysers

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devices</td>
<td>• Both thromboelastography® (TEG®) and thromboelastometry (ROTEM®) point of care (POC) blood clotting analysers are in use in Queensland</td>
</tr>
<tr>
<td></td>
<td>• Also referred to as visco elastic haemostasis assay (VHA) and visco elastic testing (VET)</td>
</tr>
<tr>
<td>Context</td>
<td>• Although generally of low quality, evidence is growing that application of TEG® or ROTEM® guided transfusion strategies may⁵⁴:</td>
</tr>
<tr>
<td></td>
<td>o Decrease the time for blood test result availability</td>
</tr>
<tr>
<td></td>
<td>o Guide and evaluate haemostatic treatment</td>
</tr>
<tr>
<td></td>
<td>o Distinguish between surgical cause of bleeding or coagulopathy</td>
</tr>
<tr>
<td></td>
<td>o Diagnose the specific type of coagulopathic impairment</td>
</tr>
<tr>
<td></td>
<td>o Reduce the need for blood products</td>
</tr>
<tr>
<td></td>
<td>o Reduce morbidity in patients with bleeding</td>
</tr>
<tr>
<td>Local facility</td>
<td>• If a POC blood clotting analyser is available:</td>
</tr>
<tr>
<td>considerations</td>
<td>o Follow a locally agreed algorithm relevant to the device used</td>
</tr>
<tr>
<td></td>
<td>o Education and training on use and interpretation of results is essential</td>
</tr>
<tr>
<td></td>
<td>o Follow quality control activities as per manufacturer's instructions</td>
</tr>
</tbody>
</table>
3.3 Resuscitation

Initial response to PPH requires a multidisciplinary team approach\(^1,12\) to restore the woman’s haemodynamic state whilst simultaneously identifying and treating the cause of bleeding. As soon as PPH is identified, notify (and request the immediate attendance of) an experienced/senior obstetrician.

<table>
<thead>
<tr>
<th>Table 17. Resuscitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect</td>
</tr>
</tbody>
</table>
| **DRS ABC** | - Follow standard procedures for emergency resuscitation
- **D**anger, **R**esponse, **S**end for help, **A**irway, **B**reathing, **C**irculation |
| **Initial assessment** | - Assess rate and volume of bleeding—caution with underestimation\(^11\)
- Lie woman flat\(^11\) or if hypotensive, Trendelenburg position
- Keep warm\(^11,12\)
 - Monitor temperature every 15 minutes\(^12\)
- Administer oxygen via face mask at 10–15 L/min regardless of maternal oxygen concentration
- Monitor vital signs continuously (if able) or at a minimum of every 15 minutes (more frequently if indicated) |
| **Four T assessment** | - Tone: fundus atonic [refer to Section 3.4 Tone]
- Trauma: fundus well contracted, blood clotting [refer to Section 3.5 Trauma]
- Tissue: retained placenta or fundus atonic and unresponsive to uterotonics [refer to Section 3.6 Tissue]
- Thrombin: fundus contracted (may become atonic), blood not clotting [refer to Section 3.7 Thrombin]
- Unknown: assess for uterine rupture/inversion concealed bleeding (e.g. vault haematoma) and non-genital causes (e.g. subcapsular liver rupture) |
| **IV access** | - Establish IV access—ideally two IV cannula (14–16 gauge)\(^12\)
- Large volume central venous access may be appropriate in some circumstances
 - IV line one for fluid replacement
 - IV line two for pharmacologic therapy
- If IV access unattainable, consider intraosseous
 - Label blood samples as such, as may not be suitable for all blood analysing equipment |
| **Urgent blood tests\(^11,12\)** | - If available, request POC blood clotting analyser (ROTEM®/TEG®) guided strategy
- Full chemistry profile (Chem20) [refer to Definition of terms]
- FBC
- Coagulation profile
- Venous/arterial blood gas (includes calcium and lactate)
- Blood cross-match only required if:
 - No valid group and hold or cross-match sample available in laboratory
 - Woman has clinically significant antibodies |
| **Fluid replacement** | - Warm IV fluids during resuscitation
- Main aim is to promote tissue perfusion and oxygen carrying capacity
- Avoid dilutional coagulopathy—preferentially give red blood cells (RBC)
 - Until RBC arrive:
 - Up to 2 L of crystalloids\(^12,55\)
 - Up to 1.5 L colloid\(^12\)
- Monitor fluid balance\(^12\)
 - Aim for urinary output of 30 mL/hour or more |
| **Blood products** | - Transfusion triggers\(^12\)
 - Clinical assessment is the main determinant
 - Do not wait unnecessarily for laboratory results
 - Undertake volume replacement on the basis that blood loss is often underestimated
- If continued bleeding, transfuse RBC early\(^12\)
 - Two units RBC (O negative if group specific unavailable)
 - Use rapid infusion sets, pump sets or pressure bags, blood warmer
 - Consider MHP activation |
3.3.1 Tranexamic acid
Give tranexamic acid as soon as possible after onset of PPH\(^{56}\)—preferably within three hours of PPH.

Table 18. Tranexamic acid

<table>
<thead>
<tr>
<th>Tranexamic acid</th>
<th>Administration</th>
</tr>
</thead>
</table>
| Intravenous (IV)| • Tranexamic acid 1 gram (100 mg/mL) IV over 10 minutes\(^{56}\)
 o Refer to Appendix B: PPH drug and blood products
 o If bleeding persists after 30 minutes or stops and restarts within 24 hours of the first dose, a second dose may be administered\(^{56}\) |
| Prescribing considerations | • Not recommended for routine prophylaxis of PPH or before birth\(^{12}\)
 • Not approved as first line drug in LAM |

Evidence summary
• Tranexamic acid (in addition to uterotonic):
 o Reduces postpartum blood loss, blood transfusion, laparotomy to control bleeding and death due to PPH
 o Reduces death due to PPH (RR 0.81, 95% CI 0.65 to 1.00), especially if given within three hours of birth (RR 0.69, 95% CI 0.52 to 0.91)
 o Does not increase risk of thromboembolic events

3.3.2 Support during PPH

Table 19. Support during PPH

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| Communication | • Communicate sensitively and contemporaneously with the woman about the care being provided
 • As soon as possible, provide information to the woman and her family about:
 o The clinical circumstances surrounding the PPH
 o The plan of management and likely treatment options
 • Address woman’s and support person concerns |
| Pain management | • Consider pain relief requirements during initial resuscitation and all subsequent treatments |
| Consent | • If treatment is likely to affect the woman’s fertility, prioritise consent procedures |
| Venous thromboembolism (VTE) | • Consider VTE prophylaxis (e.g. application of compression stockings) as clinically indicated |
3.4 Tone
The uterine cavity must be empty of tissue for effective uterine contraction. Initial clinical and mechanical measures include:

- Massage uterine fundus to stimulate contractions4,11,12,29
- Assess need for bimanual compression4,11
- Check placenta and membranes are complete
- Expel uterine clots
- Insert indwelling catheter to maintain empty bladder11,12

3.4.1 First line pharmacological therapy for uterine atony

Table 20. Oxytocin

<table>
<thead>
<tr>
<th>Administration</th>
<th></th>
</tr>
</thead>
</table>
| Intravenous (IV) | • Oxytocin 5 International units IV over 1–2 minutes11
• May repeat dose after five minutes
• Maximum dose: 10 International units IV |
| Intravenous (IV) infusion of oxytocin 30 IU in 500 mL | • Add oxytocin 30 International units to 500 mL of either 0.9% sodium chloride or compound sodium lactate (Hartmann’s solution)
• Administer oxytocin 5–10 International units per hour via infusion pump
 o Equates to 83–167 mL per hour of oxytocin 30 International units in 500 mL solution
 o No evidence to support a minimum infusion duration, although four hours is common—use clinical judgement47 |

Prescribing considerations

- An oxytocin infusion may be a safer alternative to a bolus dose of oxytocin in some women (e.g. major cardiovascular disorders)
- If IOL with oxytocin, may use same infusion at increased rate
- Rapid bolus administration may cause hypotension, tachycardia, arrhythmia and myocardial ischaemia
- If carbetocin has already been given, consider non-oxytocin uterotonic instead

Table 21. Ergometrine

<table>
<thead>
<tr>
<th>Administration</th>
<th></th>
</tr>
</thead>
</table>
| Intramuscular (IM) | • Ergometrine maleate 250 micrograms IM57
• May repeat dose after 5 minutes11
• Maximum dose: 500 micrograms56 to 1000 micrograms11 |
| Intravenous (IV) | • Ergometrine maleate 250–500 micrograms IV over 1–2 minutes11
 o Dilute 250 micrograms to 5 mL with 0.9% sodium chloride
 o May repeat every 2–3 minutes to maximum 250 micrograms57 to 1 mg11 |

Prescribing considerations

- Contraindicated with retained placenta, pre-eclampsia, severe/persistent sepsis, and renal, hepatic or cardiac disease58
- Consider concomitant anti-emetic

Table 22. Misoprostol

<table>
<thead>
<tr>
<th>Administration</th>
<th></th>
</tr>
</thead>
</table>
| Sublingual or per rectum | • Misoprostol 80012 to 100011 micrograms sublingual51 or per rectum (consider clinical circumstances when determining optimal route)
• Repeated doses not recommended |
| Prescribing considerations | • Not LAM approved as first line medication59
• Increases pyrexia greater than 38 °C (misoprostol versus controls RR 3.97, 95% CI 3.13 to 5.04)60
 o Greater than 40 °C reported in 1–14%61 |

Evidence summary

- No strong evidence that misoprostol is more effective than other uterotonics60,62,63
- Most useful where injectable uterotonics are unavailable51 or contraindicated (e.g. asthma, hypertension)
- Regardless of route (vaginal, sublingual or rectal) misoprostol takes 1–2.5 hours to increase uterine tone12, therefore early administration may help sustain uterine tone achieved through other first line drugs
3.4.2 Second line pharmacological therapy for uterine atonia

Table 23. 15-methyl prostaglandin F2 alpha (carboprost)

<table>
<thead>
<tr>
<th>Administration</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intramuscular<sup>64</sup></td>
<td></td>
</tr>
<tr>
<td>- Carboprost 250 micrograms IM</td>
<td></td>
</tr>
<tr>
<td>- Repeat as required every 15–90 minutes (not less than 15 minute intervals)</td>
<td></td>
</tr>
<tr>
<td>- Maximum dose: 2 mg (8 doses)</td>
<td></td>
</tr>
<tr>
<td>Intramyometrial<sup>11</sup></td>
<td></td>
</tr>
<tr>
<td>- Carboprost 500 micrograms intramyometrial</td>
<td></td>
</tr>
<tr>
<td>- Manufacturer does not recommend intramyometrial use<sup>65</sup></td>
<td></td>
</tr>
<tr>
<td>- Administration via intramyometrial route is at prescribing clinician’s discretion</td>
<td></td>
</tr>
<tr>
<td>Prescribing considerations</td>
<td></td>
</tr>
<tr>
<td>- Not TGA approved</td>
<td></td>
</tr>
<tr>
<td>- Available under Special Access Scheme Category A</td>
<td></td>
</tr>
<tr>
<td>- Commence cardiac monitoring and oxygen therapy prior to administration</td>
<td></td>
</tr>
</tbody>
</table>
3.4.3 Intractable bleeding

Table 24. Intractable bleeding

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| **Continued bleeding** | • Institute blood component replacement as soon as possible
 • Review criteria for:
 o MHP activation [refer to Section 4 Massive haemorrhage]
 o POC blood clotting analysis (if available) |
| **Transfer to OT** | • If urgent transfer to OT required:
 o Transfer woman flat with face mask oxygen
 o Apply bimanual compression
 o Assess need for analgesia |
| **In theatre preparation** | • Provide warmth to facilitate clotting
 o Warm blood and IV fluids
 o Consider external warming device
 • Apply pneumatic calf compression device to reduce risk of VTE
 • Involve the most experienced staff (consider external consultations if necessary) including:
 o Obstetrician
 o Anaesthetist
 • Where expertise available consider cell salvaging |
| **Medical procedures** | • Under anaesthetic check uterine cavity is empty and intact
 • If bimanual compression has been effective consider use of:
 o Intrauterine tamponade balloon tamponade (e.g. Bakri)\(^4,11\)
 o Refer to Appendix A: Uterine atonia interventions
 • Weak evidence suggests uterine packing not recommended for the management of uterine atony as can conceal bleeding\(^4\)–use clinical judgement
 • Consider selective angiographic embolisation\(^4,11,29\) (up to 90% effective\(^67\)) requires:
 o Interventional radiologist and necessary infrastructure
 o Relatively stable condition for length of procedure (approximately one hour) |
| **Surgical procedures** | • In the critically bleeding woman treat the coagulopathy concurrently\(^47\)
 • Perform a laparotomy
 • Judiciously apply aortic compression (below the level of the renal arteries) as a temporising measure\(^4,12\)
 • Maintain uterine contraction
 o Consider B-Lynch compression suture\(^11,12,29\)
 • If compression or tamponade unsuccessful, consider:
 o Bilateral uterine artery ligation\(^11,29\)
 o Bilateral utero-ovarian artery ligation
 o If expertise available, bilateral internal iliac artery ligation\(^11,29\)
 • Perform a hysterectomy\(^11\):
 o Early if life is threatened\(^1,29\)
 o If bleeding continues after use of conservative treatment options
 • Timing is critical
 o Weigh benefits of conservative versus aggressive management
 o Assess if quicker and safer to do subtotal hysterectomy based on surgeon’s skill/maternal condition
 o Use hot packs intra-abdominally
 • Post laparotomy inspect carefully for haemostasis
 • Refer to Appendix A: Uterine atonia interventions |
3.5 Trauma
Trauma is the second most common cause of PPH and may involve the uterus, cervix, vagina or perineum.

3.5.1 Genital trauma

Table 25. Genital trauma

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| **Condition stable** | • Attempt clamping of obvious arterial bleeding prior to repair
| | o Position woman to maximise visualisation and maternal comfort
| | o Repair ensuring bleeding at the apex of the laceration is secured
| | o Refer to Queensland Clinical Guideline: Perineal Care for repair principles |
| **Condition compromised** | • Treat shock [refer to Section 3.3 Resuscitation]
| | o Apply pressure on the wound or bimanual compression
| | o Assess analgesia requirements
| | o Urgently transfer to OT for repair under anaesthetic
| | o GA usually more appropriate when hemodynamically unstable |
| **Suboptimal wound visualisation** | • Transfer to OT
| | • Maximise lighting and position in lithotomy
| | • Under anaesthetic:
| | o Apply retractors to optimise visualisation, utilise assistants
| | o Check uterine cavity is empty and uterus is intact |
| **Anaesthetic ineffective** | • Assess rate of bleeding and weigh options of:
| | o Transfer to OT for general anaesthetic
| | o Top up local or regional anaesthetic (and/or transfer to OT as clinically relevant) |
| **Puerperal haematoma** | • Large non-haemostatic haematoma:
| | • Treat shock [refer to Section 3.3 Resuscitation]
| | • Transfer to OT for evacuation and repair |

3.5.2 Cervical trauma

Table 26. Cervical trauma

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| **Risk factors**| • Precipitous labour, assisted vaginal birth, cervical suture
| | • May occur in absence of risk factors |
| **Presentation**| • Profuse haemorrhaging during and after third stage of labour
| | • Diagnosis strengthened by exclusion of other causes of PPH |
| **Assessment** | • Urgently transfer to OT
| | • Undertake assessment and repair under anaesthetic
| | • Optimise assessment with positioning, lighting, retractors and assistants
| | • Inspect entire genital tract
| | • To inspect the cervix:
| | o Grasp one side of the cervix between two sponge holders
| | o Remove and reapply forceps one at a time moving in a clock wise direction, keeping forceps 2–3 cm apart
| | o Inspect for tears between the forceps after each repositioning
| | o Continue until the full 360° of the cervix has been inspected |
| **Repair** | • Requires experienced obstetrician
| | • Ensure bleeding at the apex of the laceration is secured
| | • If difficult to visualise:
| | o Start sutures at distal end of tear and gently retract on suture material to expose apex
| | o Avoid suture placement cephalad to the anterior fornix due to risk of ureteral ligation
| | • If extensions (e.g. lower uterine, high vaginal, cardinal ligament), consider performing a laparotomy to enable simultaneous vaginal and abdominal routes for repair
| | • If bleeding continues, consider further surgical intervention |
3.5.3 Uterine rupture

Uterine rupture can occur spontaneously or be associated with previous obstetric surgery. The severity of the haemorrhage depends upon the extent of the rupture.

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| **Risk factors**^{68,69} | • Previous uterine surgery or CS
• Oxytocin administration
• Malpresentation or undiagnosed cephalopelvic disproportion
• Dystocia during second stage of labour
• Grand multiparity
• Macrosomic fetus
• Placenta percreta
• Uterine abnormalities (e.g. rudimentary horn) |
| **Presentation** | • Intrapartum—act to rapidly deliver baby and placenta
• Signs of uterine rupture may include³⁷:
 o **Maternal**: tachycardia and signs of shock, sudden shortness of breath, constant abdominal pain, possible shoulder tip pain, uterine/suprapubic tenderness, change in uterine shape, pathological Bandl’s ring, incoordinate or cessation of contractions, frank haematuria, abnormal vaginal bleeding, abdominal palpation of fetal parts, absent presenting part
 o **Fetal**: abnormal CTG tracing, loss of fetal station
• Postpartum presentation often associated with:
 o Pain, abdominal distension and persistent vaginal bleeding
 o Haematuria may occur if rupture extends into the bladder |
| **Treatment** | • Urgently transfer to OT
• Confirm diagnosis during surgery
• Under anaesthetic:
 o Palpate uterine cavity to identify rupture site
 o Repair rupture using multiple layers and absorbable sutures
• Consider hysterectomy (with midline rather than transverse incision) if:
 o Defect is large or difficult to close
 o Haemodynamic stability is threatened |
3.5.4 Uterine inversion

Uterine inversion is associated with immediate life-threatening haemorrhage and shock. Delay in treatment increases the risk of mortality. Consider anaesthesia prior to attempting repositioning of the fundus.

Table 28. Uterine inversion

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| **Risk factors** | • Uterine over distension
 • Invasive placentation
 • Short umbilical cord/excessive umbilical cord traction
 • Tocolysis
 • Oxytocin use
 • Primiparity
 • Manual extraction of the placenta |
| **Presentation** | • Sudden onset of PPH
 • Irregularly shaped or absent palpable fundus
 • A completely inverted uterus may appear as a bluish grey mass at the introitus
 • Haemodynamic instability
 • Excruciating pain and hypovolaemic shock disproportionate to revealed blood loss |
| **Diagnosis** | • Use bimanual examination to locate the uterine fundus in the lower uterine segment or vagina
 • Non-surgical measures reported successful in 99 out of 102 uterine inversions |
| **Management** | • If oxytocin infusing, cease as replacement requires relaxed uterus
 • If placenta in situ leave in place for manual removal in OT
 • Drugs may relax the cervical ring to facilitate replacement
 o Glycerol trinitrate (GTN) 400 micrograms spray
 o Terbutaline 250 micrograms subcutaneous or IV
 o Magnesium Sulphate 4 g IV infusion over 5 minutes |
| **Manual reduction** | • Perform promptly
 o Grasp protruding fundus with palm of hand
 o Direct fingers toward posterior fornix and lift uterus up through the cervix/pelvis, into the abdomen and toward the umbilicus
 o Once reverted, maintain bi-manual compression until a strong uterine contraction is felt
 o Start uterotonic therapy to contract uterus and prevent reoccurrence
 • Refer to Section 3.6 Tissue for manual removal of placenta |
| **Hydrostatic pressure** | • Under anaesthetic give tocolytic agent to relax uterus and cervix
 • If placenta not delivered, work quickly to manually detach
 • Apply gentle manual pressure to the uterine fundus and return it to the abdominal position
 • If a dense constriction ring occurs consider:
 o A laparotomy to allow vaginal and abdominal manipulation of the fundus
 o Use deep traction suture to manipulate fundus and to maintain positioning once retracted
 o Then immediately start uterotonic therapy to contract uterus and prevent reoccurrence
 o Consider applying bimanual compression until uterine tone returns
 o Monitor to ensure there is no reoccurrence |

Refer to online version, destroy printed copies after use
3.6 Tissue

Table 29. Tissue

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| **Clots in the uterine cavity due to uterine atonia** | - Express clots by cupping the fundus in the palm of the dominant hand and compressing the uterus firmly between thumb and fingers
- Observe for expulsion of clots and measure volume
- Massage fundus firmly
- Take steps to prevent further atonia |
| **Trailing membranes** | - Use sponge holders to clamp membranes extending beyond the introitus, without traction, roll forceps to create a rope of membranes
 o Move forceps in an up and down motion and apply gentle traction
 o Maternal pushing may assist in removal
- Once trailing membranes are delivered:
 o Perform vaginal examination (VE)
 o If membranes present attempt delivery with fingers or forceps
- Observe uterine tone and blood loss—be alert for slow steady trickle
- If large amount of membranes retained—transfer to OT for manual removal |
| **Retained placenta** | - Insert in/out urinary catheter or indwelling catheter
- Ensure prophylactic third stage uterotonic has been given
- Reattempt CCT and consider additional oxytocin (10 International units IV or IM) if the woman is bleeding excessively
 o Maternal pushing and repositioning may assist in delivery
- Check if risk factors for abnormal placentation
 o If available, portable ultrasound may assist in placental location
- VE to assess if placenta remains within the uterus (i.e. unable to be felt protruding through the cervix or lying high in the vagina)
- If unable to deliver placenta or appears incomplete, transfer to OT for manual removal
 o Consider need for bimanual compression during transfer
- Only consider manual removal procedures outside of the OT environment if sufficient and appropriately skilled clinicians and resources available (e.g. for administration of sedation, continuous monitoring, resuscitation)
- Post-delivery of the placenta, massage fundus to promote sustained uterine tone |
| **Manual removal under anaesthesia** | - Consider use of USS during procedure
- Gently manually remove retained products
- If manual removal unsuccessful apply gentle curettage with a large blunt curette
- Recommend a single dose of antibiotics (ampicillin or first generation cephalosporin)
- Post procedure:
 o Explore the uterine cavity to ensure it is intact
 o Check for cervical, vaginal and perineal trauma and repair as necessary
 o Check haemostasis achieved |
| **Not recommended** | - Ergometrine—as tetanic contractions may delay placental expulsion
- Prostaglandin E2 alpha (dinoprostone)
- Oxytocin IV infusion to assist the birth of the placenta
- Use of umbilical vein for oxytocin injection and/or misoprostol |
3.7 Thrombin
Late diagnosis or underestimation of the volume of bleeding may be associated with coagulopathy.72 If coagulopathy is suspected consult with a haematologist or transfusion specialist for advice on blood component replacement, laboratory monitoring and result interpretation.1

Table 30. Blood products

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical presentation</td>
<td>• Give RBC in response to haemodynamic changes and estimated blood loss rather than Hb trigger—do not wait for blood results to treat29,72:</td>
</tr>
<tr>
<td></td>
<td>o Oozing from puncture/cannulation/injection sites or surgical field</td>
</tr>
<tr>
<td></td>
<td>o Haematuria</td>
</tr>
<tr>
<td></td>
<td>o Petechial, subconjunctival and mucosal haemorrhage</td>
</tr>
<tr>
<td></td>
<td>o Blood that no longer clots</td>
</tr>
<tr>
<td></td>
<td>o Uterine atonia secondary to increased fibrin degradation products</td>
</tr>
<tr>
<td></td>
<td>o Temperature less than 35 °C</td>
</tr>
<tr>
<td></td>
<td>• Laboratory signs1 [refer to Table 31. Laboratory values]</td>
</tr>
<tr>
<td>Coagulopathy correction</td>
<td>• If POC blood clotting analyser available (ROTEM®/TEG® guided), correct in response to results (as per locally agreed algorithm) for targeted replacement of blood and blood products</td>
</tr>
<tr>
<td></td>
<td>• If POC blood clotting analyser not available transfuse (and repeat as necessary) guided by laboratory findings:</td>
</tr>
<tr>
<td></td>
<td>o RBC four units</td>
</tr>
<tr>
<td></td>
<td>o Fibrinogen concentrate or cryoprecipitate to maintain fibrinogen level greater than 2.5 g/L</td>
</tr>
<tr>
<td></td>
<td>o Fresh frozen plasma (FFP) two units</td>
</tr>
<tr>
<td></td>
<td>o Platelets1 to maintain platelet level greater than 50 x10⁹</td>
</tr>
<tr>
<td></td>
<td>▪ If no level available, one therapeutic adult dose of platelets after 8–10 units of RBC</td>
</tr>
<tr>
<td></td>
<td>• No evidence to guide optimal ratio of RBC:FFP:platelets in PPH66</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>• Use fibrinogen concentrate or cryoprecipitate early and aim to maintain fibrinogen levels⁶⁶,⁷² above 2.5 g/L</td>
</tr>
<tr>
<td></td>
<td>o Clauss fibrinogen levels more reliable (lower) than prothrombin time (PT) derived fibrinogen assays—consider requesting clottable fibrinogen</td>
</tr>
<tr>
<td></td>
<td>o Fibrinogen falls earlier than other coagulation factors and may be low despite normal PT/APTT⁷²</td>
</tr>
<tr>
<td></td>
<td>o Fibrinogen/fibrin deficiency (and not thrombin) is the major informative marker for the severity of haemorrhage⁷³</td>
</tr>
<tr>
<td></td>
<td>o Level of 2 g/L or less is associated with progression of bleeding, increased RBC and blood component requirement and need for invasive procedures⁵,⁷²</td>
</tr>
<tr>
<td></td>
<td>• Use considered off label in PPH</td>
</tr>
</tbody>
</table>

3.7.1 Target results
Measure the following parameters early and frequently. With successful treatment values should trend toward normal.1

Table 31. Laboratory values

<table>
<thead>
<tr>
<th>Investigation (wks gestation)</th>
<th>Reference range</th>
<th>Units</th>
<th>Physiologic derangement¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb (35–42 weeks)</td>
<td>110–147</td>
<td>g/L</td>
<td>less than 80</td>
</tr>
<tr>
<td>Platelets (> 25 weeks)</td>
<td>150–430</td>
<td>x 10⁹/L</td>
<td>less than 50</td>
</tr>
<tr>
<td>APTT (0–41 weeks)</td>
<td>26–41</td>
<td>seconds</td>
<td>greater than 1.5 x normal</td>
</tr>
<tr>
<td>INR (0–41 weeks)</td>
<td>0.9–1.3</td>
<td></td>
<td>greater than 1.5 x normal</td>
</tr>
<tr>
<td>Prothrombin time</td>
<td>9.6–12.9</td>
<td>seconds</td>
<td></td>
</tr>
<tr>
<td>Fibrinogen (by term)</td>
<td>5–6</td>
<td>g/L</td>
<td>less than 2.0</td>
</tr>
<tr>
<td>Ionised calcium</td>
<td>1.16–1.30</td>
<td>mmol/L</td>
<td>less than 1.1</td>
</tr>
<tr>
<td>pH</td>
<td>7.35–7.45</td>
<td></td>
<td>less than 7.2</td>
</tr>
<tr>
<td>Lactate</td>
<td>Lab dependent</td>
<td>mmol/L</td>
<td>greater than 4</td>
</tr>
<tr>
<td>Base excess</td>
<td>greater than minus 6</td>
<td></td>
<td>less than minus 6</td>
</tr>
<tr>
<td>Body temperature</td>
<td>36–37.2</td>
<td>°C</td>
<td>less than 35 °C</td>
</tr>
</tbody>
</table>
3.7.2 Coagulopathy principles

Table 32. Coagulopathy principles

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| **Communication with laboratory** | • Inform if POC blood clotting analyser (ROTEM®/TEG®) is being used
• Notify of impending arrival of urgent blood samples
• Communicate clearly the need for emergency provision of blood and blood components
• Identify minimum time till blood product availability, include transport time |
| **Laboratory monitoring** | • If POC blood clotting analyser available (ROTEM/TEG guided), follow locally agreed algorithm for targeted replacement
 o Full chemistry profile (Chem20) [refer to Definition of terms]
 o FBC
 o Venous/arterial blood gas (ABG) (includes calcium and lactate)
 o Coagulation profile (PT, INR, APTT, fibrinogen)
• Monitor FBC, coagulation profile, calcium, ABG every 30–60 minutes
 o Refer to Table 31 Laboratory values |
| **Avoid hypothermia and acidosis** | • Optimise body temperature (i.e. more than 35 °C)
 o Use fluid warmers and forced air warmers
 o Minimise exposure, remove wet linen, provide warm blankets
 o Monitor temperature at least 15 minutely
• Maintain oxygenation, cardiac output, tissue perfusion
 o Monitor arterial blood gases (pH, lactate base excess)
• Mortality is increased when hypothermia and acidosis occur with coagulopathy (the ‘lethal triad’) |
| **Hypocalcaemia** | • If ionised calcium less than 1.1 mmol/L, include IV 10% calcium gluconate 10 mL
 o Citrate from transfused blood often causes hypocalcaemia |
| **Early DIC** | • Be alert to early disseminating intravascular coagulation (DIC) as associated with placental abruption, severe pre-eclampsia or HELLP syndrome, acute fatty liver of pregnancy, amniotic fluid embolism, fetal death in utero, septicaemia, dilutional coagulopathy secondary to massive transfusion |

3.7.3 Cross matched RBC not available

Take blood for cross matching prior to giving O negative RBC—do not wait for results.

Table 33. Blood cell replacement

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Consideration</th>
</tr>
</thead>
</table>
| No blood group and antibody screen | • Send blood for group and antibody testing
• Request compatible blood
• Transfuse O negative RBC (ideally Kell negative) |
| Blood group and antibody screen negative | • Laboratory onsite
 o Transfuse ABO Rh compatible RBC
• Laboratory offsite
 o Transfuse O negative RBC
 o Await group specific RBC |
| Blood group and antibody screen positive | • Await antibody testing and cross match for provision of compatible blood
• While waiting and if urgent, in consultation with a haematologist, transfuse most suitable uncross matched RBC |
| Screened homologous blood unavailable in time frame | • Transfuse O negative RBC emergency stock
• Contact RSQ for urgent retrieval |
4 Massive haemorrhage

Reduction of morbidity and mortality associated with critical bleeding can be achieved through:

- A structured approach that includes escalation procedures and timely and appropriate use of blood components
- A rapid and coordinated multidisciplinary clinical response
- Implementation of a massive haemorrhage protocol that is reviewed annually by local key stakeholders
 - An example MHP is provided below

Table 34. Example MHP bleeding protocol

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| **Activation criteria** | • Woman is actively bleeding and has one or more of the following criteria:
 o Major obstetric bleed (i.e. estimated blood loss more than 2500 mL)
 o Actual or anticipated four RBC units in less than four hours plus haemodynamic instability
 o Clinical or laboratory (including ROTEM®/TEG®) evidence of coagulopathy
 • In low resource settings as per locally developed protocol |
| **Roles and communication** | • Lead clinician:
 o Identifies need for protocol activation
 o Contacts laboratory/blood bank staff to activate the protocol
 • Laboratory staff:
 o Prepares (e.g. thaws) and issues blood products
 o Anticipates repeat testing and blood component requirements
 o Minimises test turnaround times
 o Considers staff resources
 • Haematologist:
 o Contacted by laboratory staff and notified of situation
 o Contacted by lead clinician to seek input as needed regarding:
 ▪ Blood component and other therapies
 ▪ Result interpretation
 • RSQ: contact early for transfer advice when required |
| **Co-ordination of blood component and other therapies** | • Pre-designate:
 o Dose, timing and ratio of blood component therapy
 ▪ Configurations may vary according to facility resources—consider RBC:FFP ratio of 2:1 and one dose of platelets every second MHP pack
 o Triggers for administration of fibrinogen concentrate, cryoprecipitate and calcium gluconate
 o Triggers for haematologist input
 ▪ Tranexamic Acid [refer to Table 18. Tranexamic acid] and/or
 ▪ Additional blood component therapy for continued bleeding |
| **Laboratory testing** | • Pre-designate:
 o Baseline blood tests
 o Tests to be repeated every 30–60 minutes
 ▪ Refer to Table 31. Laboratory values |
| **POC blood clotting analyser algorithm** | • If POC clotting analyser available (e.g. ROTEM®/TEG®), agree an algorithm relevant to local conditions that aids:
 o Correct specimen collection
 o Interpretation of results
 o Component replacement triggers
 o Retesting requirements
 o Identification of the location of the POC blood clotting analyser
 o Access to expert advice |
| **Deactivation** | • Lead clinician promptly contact laboratory/blood bank staff to deactivate protocol once bleeding is controlled
 • Return unused products |
5 Postnatal care after PPH

Table 35. Postnatal care

<table>
<thead>
<tr>
<th>Aspects</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-hospital transfer</td>
<td>• Make the decision to transfer early, contact RSQ on 1300 799 127</td>
</tr>
</tbody>
</table>
| Haemodynamic state | • Transfer to high dependency/intensive care unit for observation if condition not critical
 | o Observe in birth suite for two hours, once stable transfer to postnatal unit
 | o First 24 hours post birth, monitor vital signs, uterine tone and blood loss at least four hourly, monitor fluid balance
 | o After 24 hours post birth monitor as per clinical condition |
| Haemoglobin | • Take six hours after stabilisation and repeat within 24 hours of birth
 | • If Hb less than 70 g/L and/or symptomatic offer RBC transfusion
 | o If RBC transfusion declined offer parenteral iron therapy
 | • If Hb less than 70 g/L and asymptomatic, offer parenteral iron therapy
 | • If Hb is between 70–90 g/L and asymptomatic and where there is no continuing threat of bleeding offer parenteral iron therapy or oral therapy with vitamin C supplement on an individual basis
 | • Provide information on ways to increase dietary iron |
| VTE | • Consider pharmacological VTE prophylaxis as increased risk following PPH
 | • Refer to Queensland Clinical Guideline: Venous thromboembolism (VTE) prophylaxis in pregnancy and the puerperium
 | • If spinal/epidural catheter in situ: apply sequential compression device
 | o After removal proceed to graduated elastic compression stockings and/or pharmaceutical prophylaxis
 | • Encourage early mobilisation and avoid dehydration
 | • Observe for deep vein thrombosis and pulmonary embolism |
| Mother/baby support | • Support maternal and infant bonding
 | o Facilitate regular skin-to-skin contact under direct supervision
 | • Support infant feeding and offer midwifery/lactation consultant assistance
 | o If unable to lactate or persistent hypotension consider Sheehan’s syndrome
 | • Discuss risks and advise against co-sleeping and bed sharing given possible fatigue associated with anaemia |
| Debriefing | • Offer the woman and her family debriefing/clinical disclosure by senior team member(s) who preferably, were present at the event
 | • Offer additional opportunities for discussion/debrief six weeks postpartum
 | • Offer information about possible emotional responses following PPH and support resources available
 | • Offer social worker review |
| Preparation for discharge | • Ensure comprehensive discharge summary communicated to other health care providers
 | o Consider personal contact (e.g. telephone) with the General Practitioner (GP) prior to discharge
 | • Educate woman about signs, symptoms and self-referral to GP regarding:
 | o Persistent or increasing bleeding
 | o Infection and risk of secondary PPH
 | o Postnatal depression associated with anaemia
 | o VTE
 | • Encourage follow up with GP (e.g. monitor Hb, lactation, mental health)
 | • Referral to local Child Health services for lactation support and close follow up in view of anaemia and postnatal depression risk
 | • Offer advice regarding maintaining bowel functions if using iron supplements
 | • Inform woman of increased risk of PPH in subsequent pregnancies and the need to inform future primary carers of PPH complication |
References

45. Adnan N, Conlan-Trant R, McCormick C, Boland F, Murphy DJ. Intramuscular versus intravenous oxytocin to prevent postpartum haemorrhage at vaginal delivery: randomised controlled trial. BJM 2018;362:k3546.

Refer to online version, destroy printed copies after use

Appendix A: Uterine atonia interventions

Bimanual compression

- With one hand:
 - Keeping fingers straight and thumb tucked in palmar side of index finger insert hand into vagina with palm facing the woman’s thigh
 - Once fingers meet resistance roll the hand so that palm is upward and curl fingers into a fist placing thumb on top of index finger
 - Place the fist into the anterior fornix of the vagina and apply upward pressure
- With the other hand:
 - Identify the uterine fundus
 - Deeply palpate to situate fingers behind the fundus
 - Cupping the fundus compress it firmly around the intravaginal fist
 - Maintain compression and evaluate effect

Balloon tamponade

- Empty uterine cavity of clots
- Insert the end of the balloon through the cervix into the uterine cavity, ensuring the balloon is completely inside the uterus
- Inflate the balloon with sufficient volume of warm sterile saline (approximately 250-500 mL); the uterus should now be firm with minimal blood loss
- Assess blood loss through drainage portal for tamponade effect. If bleeding continues tamponade ineffective and surgical intervention required
- Commence broad spectrum antibiotic cover
- Continue or commence oxytocic infusion

B-Lynch compression suture (performed at laparotomy or CS)

- (Re) open the abdomen and (re) open the uterus
- Check the uterine cavity for bleeding sites that might be oversewn
- Test for haemostasis before using the B-Lynch suture using bimanual compression and swabbing the vagina. If bleeding is controlled temporarily in this fashion the B-Lynch suture is likely to be effective
- Placement of the suture, as demonstrated, requires surgical expertise
Appendix B: PPH drug and blood products

Consult a pharmacopeia for full details of indications, cautions, contraindications and interactions

<table>
<thead>
<tr>
<th>Drug/Product</th>
<th>Dose/Route</th>
<th>Reconstitution</th>
<th>Maximum</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tranexamic acid</td>
<td>1 gram IV over 10 minutes</td>
<td>Nil required</td>
<td>If bleeding persists after 30 minutes or stops and restarts within 24 hours of the first dose, a second dose may be administered</td>
<td>Rapid administration may cause hypotension, dizziness Use infusion device/pump</td>
</tr>
<tr>
<td>Oxytocin</td>
<td>5 International units IM</td>
<td>Nil</td>
<td>May repeat after 5 minutes to maximum total dose of 10 International units</td>
<td>Instead of Ergometrine if BP elevated Ensure placenta is expelled</td>
</tr>
<tr>
<td></td>
<td>5–10 International units IV over 1–2 minutes</td>
<td>Nil</td>
<td>May repeat every 2–3 minutes to maximum total dose of 250 micrograms—1 mg</td>
<td>Administrator with anti-emetic Contraindicated with retained placenta, pre-eclampsia May cause severe hypertension</td>
</tr>
<tr>
<td></td>
<td>5–10 International units IV via infusion pump</td>
<td>Oxytocin 30 International units in 500 mL crystalloid or 0.9% sodium chloride Infuse at 83–167 mL/hour</td>
<td>May repeat every 2–3 minutes to maximum total dose of 250 micrograms—1 mg</td>
<td>Administrator with anti-emetic Contraindicated with retained placenta, pre-eclampsia May cause severe hypertension</td>
</tr>
<tr>
<td>Ergometrine</td>
<td>250 micrograms IV over 1–2 minutes</td>
<td>Dilute 250 microgram up to 5 mL with 0.9% sodium chloride (50 microgram per mL)</td>
<td>May repeat every 2–3 minutes to maximum total dose of 250 micrograms—1 mg</td>
<td>Administer with anti-emetic Contraindicated with retained placenta, pre-eclampsia May cause severe hypertension</td>
</tr>
<tr>
<td></td>
<td>250 micrograms IM</td>
<td>Nil</td>
<td>May repeat after 5 minutes to maximum total dose of 500 micrograms—1 mg</td>
<td>Administer with anti-emetic Contraindicated with retained placenta, pre-eclampsia May cause severe hypertension</td>
</tr>
<tr>
<td>Misoprostol</td>
<td>800–1000 microgram per rectum</td>
<td>Nil</td>
<td>Repeat dose not recommended</td>
<td>Use when oxytocin and ergometrine are not successful Due to slow onset of action, consider early administration</td>
</tr>
<tr>
<td>Carboprost</td>
<td>250 micrograms IM</td>
<td>Nil</td>
<td>May repeat after 15 minutes to maximum total dose of 2 mg (8 doses)</td>
<td>Manufacturer does not recommend intramyometrial —use at clinician’s discretion Commence cardiac monitoring and oxygen therapy prior to administration</td>
</tr>
<tr>
<td></td>
<td>500 micrograms intramyometrial</td>
<td>Nil</td>
<td>Unknown/repeat not recommended</td>
<td>Manufacturer does not recommend intramyometrial —use at clinician’s discretion Commence cardiac monitoring and oxygen therapy prior to administration</td>
</tr>
<tr>
<td>Fibrinogen concentrate</td>
<td>Dose in response to fibrinogen level If fibrinogen level unknown then 50–70 mg/kg body weight IV at a rate not exceeding 5 mL per minute</td>
<td>Reconstitute with 50 mL of sterile water Swirl gently to ensure fully dissolved Do not shake vial</td>
<td>Unknown/repeat not recommended</td>
<td>Dosing based on product information for congenital fibrinogen deficiency Administer via infusion device/pump Dose per vial approximately 1 g 4 g increases fibrinogen by approximately 1 g/L</td>
</tr>
<tr>
<td>Cryoprecipitate</td>
<td>Dose in response to fibrinogen level One adult standard dose IV is equivalent to 10 whole blood or five apheresis units</td>
<td>Stored frozen Defrost over 30 minutes before administration</td>
<td>Unknown/repeat not recommended</td>
<td>Derived from either whole blood or collected via apheresis Australian Red Cross states one standard adult dose provides 3–4 g of fibrinogen; clinical experience suggests 2–3 g or less</td>
</tr>
</tbody>
</table>
Acknowledgements
Queensland Clinical Guidelines gratefully acknowledge the contribution of Queensland clinicians and other stakeholders who participated throughout the guideline development process particularly:

Working Party Clinical Lead
Associate Professor Rebecca Kimble

QCG Program Officer
Jacinta Lee, Manager

Working Party Members
Dr Wally Aheypala, Senior Staff Anaesthetist, Royal Brisbane and Women's Hospital
Dr Harsha Ananthram, Consultant, The Townsville Hospital
Ms Rukhsana Aziz, Clinical Midwifery Consultant, Ipswich Hospital
Dr Fiona Barron, Specialist Anaesthetist, Sunshine Coast University Hospital
Mr Andrew Beavis, Patient Safety Officer, Department of Health
Dr Elize Bolton, Clinical Director, Bundaberg Hospital
Mrs Anne Bousfield, Clinical Midwifery Consultant, South West Hospital Health Service
Mrs Kym Boyes, Nurse Practitioner Women's Health, Cooktown Multipurpose Health Service
Ms Jacqueline Chaplin, Midwifery Educator, Ipswich Hospital
Dr Pinar Cingiloglu, Junior House Officer, Royal Brisbane and Women's Hospital
Dr Lindsay Cochrane, Staff Specialist, Caboolture Hospital
Dr Elise Coghill, Registrar, Royal Brisbane and Women's Hospital
Dr Paul Conaghan, Senior Staff Specialist, Mater Mothers Hospital
Mrs Catherine Cooper, Practice Development Midwife, Mater Misericordiae Limited
Mrs Allison Corcoran, Registered Nurse, Royal Brisbane and Women's Hospital
Ms Julie Cox, Registered Midwife, Gold Coast University Hospital
Mrs Helen Coxhead, Registered Nurse/Midwife, James Cook University
Mrs Lisa Davenport, Registered Midwife, Sunshine Coast University Hospital
Mrs Christine Davey, Clinical Midwifery Consultant, Rockhampton Hospital
Ms Tracey Davies, Nurse Educator/Clinical Coach, Sunshine Coast University Hospital
Mrs Victoria De Araujo, Practice Development Midwife, Gold Coast University Hospital
Mrs Carole Dodd, Clinical Midwife, Caboolture Hospital
Dr Kylie Edwards, Staff Specialist, Bundaberg Hospital
Dr Victoria Eley, Anaesthetist, Royal Brisbane and Women's Hospital
Mrs Liz Ford, Clinical Midwife, Innisfail District Hospital
Mrs Bronwyn Galea, Registered Midwife, Gladstone Base Hospital
Dr Amanda Harry, Principal House Officer, Royal Brisbane and Women's Hospital
Dr Glenda Hawley, Lecturer, University of Queensland
Ms Jacinta Hay, Registered Midwife, Logan Hospital
Dr Rory Howard, Senior Medical Officer, Atherton Hospital
Dr Christopher King, Director of Obstetrics and Gynaecology, Mount Isa Hospital
Ms Janelle Laws, Nurse Educator, Royal Brisbane and Women's Hospital
Dr Nigel Lee, Midwifery Lecturer, University of Queensland
Dr Julie Lee, Staff Specialist Anaesthetist, Royal Brisbane and Women's Hospital
Ms Meredith Lovegrove, Clinical Midwife, Rockhampton Hospital
Clinical Associate Professor Nolan McDonnell, Anaesthetist, King Edward Memorial Hospital
Ms Sandra McMahon, Practice Development Midwife, Gold Coast University Hospital
Mrs Marcia Morris, Midwifery Educator, Royal Brisbane and Women's Hospital
Ms Jacqueline O'Neill, Registered Midwife, Toowoomba Hospital
Dr Anni Paasilahti, Consultant Intensivist, Mackay Base Hospital
Ms Bronwyn Pearse, Clinical Nurse Consultant, The Prince Charles Hospital
Dr Jane Reeves, Obstetrician and Gynaecologist, Sunshine Coast University Hospital
Dr John Rowell, Haematologist, Royal Brisbane and Women's Hospital
Dr Thageswaran Rudra, Senior Staff Specialist, Royal Brisbane and Women's Hospital
Ms Teresa Sander, Registered Midwife, Rockhampton Hospital
Ms Pam Sepulveda, Clinical Midwifery Consultant, Logan Hospital
Ms Alecia Staines, Consumer Representative, Maternity Consumer Network
Mrs Rhonda Taylor, Clinical Midwifery Consultant, The Townsville Hospital

Queensland Clinical Guidelines Team
Associate Professor Rebecca Kimble, Director
Ms Jacinta Lee, Manager
Ms Stephanie Suthers, Clinical Nurse Consultant
Ms Cara Cox, Clinical Nurse Consultant
Dr Brent Knack, Program Officer
Steering Committee

Funding: This clinical guideline was funded by Healthcare Improvement Unit, Queensland Health