

Estimating energy, protein & fluid requirements for adult clinical conditions

Wherever possible, energy requirements of individuals should be measured using indirect calorimetry or other objective measures. Where measuring energy expenditure is not possible, prediction equations can be used, however, there is a lack of strong and consistent evidence supporting standardised predictive equations. As a result, when estimating requirements for protein and energy, the following should be considered:

Starting point only	Predictive equations are not considered accurate for individuals in the clinical setting. Although these provide a useful starting point, the emphasis should be on reviewing and reassessment, considering changes to treatment goals, clinical conditions, biochemical and anthropometric parameters, and patient activity levels.
Ease of use	Consider using predictive methods that are easy to apply, do not need calculators, and do not require multiple clinical measurements. At the bedside, these are just as likely to provide adequate estimates of requirements as those that take more time and effort.
Using a data range	Single figure estimates imply accuracy. This can be misleading and result in poor follow-up.
Rounding data / units of Measure	Consider rounding protein requirements in units of 5, and round kilojoules to the nearest 100kJ. Simple maths avoids the need for calculators.
Clinical measurements	Consider the following: Is the patient's weight / height an estimate or an accurate measure? Are they fluid overloaded or do they have ascites? What is your assessment of body composition? Should an adjusted body weight be used?
Consider the evidence base	Are the original data sets relevant to the current patient population? Is the methodology applicable at an individual patient level?
Be flexible	Remember that other professionals may use different data ranges and that these also may be justifiable. Remember: ensuring review and reassessment is the key to patient focused care.

Weight to be used for calculations.

Within Healthy Weight Range (BMI 18.5 - 25kg/m²)*	Use actual weight		
Underweight	Use actual weight		
Overweight/Obese^	Consider use of adjusted body weight IBW + [(actual weight – IBW) x 25%] IBW = weight at BMI 25		

^{*} BMI reference ranges can vary according to clinical condition, for example in elderly people. See *NEMO Using Body Mass Index* guide for further information.

[^] The use of an adjusted body weight is highly debated in the literature. Consider your patient's body composition when adjusting their body weight. For example, no adjustment may be required for an overweight individual with high lean body mass or an adjustment factor of 50% may be used where it is suspected that the patient has a higher muscle mass contributing to higher BMI. There is no data available to recommend level of adjustment of body weight for BMI >60.

Estimating energy, protein & fluid requirements

The following 'ratio method' equations for estimating energy, protein and fluid requirements have been collated from the available evidence-based guidelines and literature (see reference list). Please note that **many of these equations are based on 'expert opinion' or have limited supporting evidence** in the available guidelines. The Queensland Health NEMO Nutrition Support Group recommends these equations **be used only as a starting point** for establishing nutrition support, and that clinicians have a thorough understanding of their context within respective evidenced-based guidelines or literature. Regular ongoing monitoring and assessment to determine individual patient requirements is essential.

Patient category E kJ/kg		ergy	Protein	
		kcal/kg	g/kg	
Not hypermetabolic				
<i>Includes:</i> CVA ^{1,2} , ulcerative colitis/Crohn's ³ (remission)		25-30	0.8-1	
Ulcerative colitis/Crohn's ³ (active)		25-30	1.2-1.5	
Acute elderly patients ^{4,5}	100-125	25-30	1-1.5	
Adults ⁶ (not severely ill or injured, nor at risk of refeeding syndrome)	100-145	25-35	0.8-1.5	
AKI (non-catabolic; not on dialysis) ⁷	100-145	25-35	0.8-1	
Moderately hypermetabolic				
HIV/AIDS ⁸ asymptomatic	110-135	26-32	0.8-1	
HIV/AIDS ⁸ symptomatic		28-38	0.8-1	
Post-operative (~14days) ^{9,10} , repletion, infection ¹¹ , temp >38° ¹¹ , head	125-145	30-35	1.2-1.5	
injury ¹²⁻¹⁴ , multi-trauma ¹⁵ , BMT ¹⁶ , peritonitis, burns (10-20%				
FTB/DPT), exacerbation COPD ^{17,18}				
XRT or chemoXRT ^{9,19}	≥125	≥30	≥1.2	
Pancreatitis ^{20,21}	105-145	25-35	1.0-1.5	
Pressure Injury ²²	125-146	30-35	1.2-1.5	
Cancer cachexia ²³	≥120	≥30	≥1.4	
Liver disease ²⁴ (non-hospitalised, stable, BMI<30kg/m ²)	125-145	30-35	1.2-1.5	
Liver cirrhosis ²⁴ (non-hospitalised, stable BMI 30-40kg/m ²) using ABW	105-145	25-35	1.2-1.5	
Liver cirrhosis ²⁴ (non-hospitalised, stable BMI >40kg/m ²) using ABW	84-105	20-25	1.2-1.5	
Hypermetabolic				
Burns (>20% FTB/DPT) ²⁶	145-160	35-40	1.5-2.0	
Liver disease ^{24,25} (decompensated cirrhosis, acute alcoholic	145-160	35-40	1.2-1.5	
hepatitis/liver failure, acute phase post-transplantation)				
Cystic Fibrosis ²⁷				
Energy: 110-200% of general population energy target				
Protein: 15-20% of energy intake				
Refeeding risk ^{6,28}				
Oral nutrition – commence at goal energy and protein targets				
Enteral/parenteral – Commence at 50% energy and protein targets				
This is a starting point only. Increase gradually nonitoring relevant parameters for				
refeeding syndrome and overfeeding.				
Eating Disorders ²⁹				
Energy: 120kJ/kg x 1.4 (activity factor) x 1.5 (repletion factor).				
Note: 12MJ is the standard energy meal plan goal for patients with an eating disorder				

Chronic Kidney Disease 30-34 (ONLY applicable when NOT acutely unwell; use oedema free ABW if BMI>25)			
Stage 1-2 Stage 3-5 (not on dialysis) Stage 5 (HD+PD; need to account for bag glucose in kJ for PD) *Energy based on age, gender, physical activity, weight goals, body composition, CKD stage, concurrent illness/inflammation **Protein – lower end with close monitoring if uraemic symptoms/conservative care; mid range for BGL control, higher end if stable CKD Stage 3		25-35 25-35 25-35	0.75-1 0.55-0.8** 1-1.2
Critically ill ³⁵⁻³⁷ Early phase critical illness Critical illness Nutrition intake providing 70-100% of resting energy expenditure (REE) is considered target. ³⁵¹ If predictive equations are used to estimate the energy need, nutrition below 70% estimated needs should be preferred over isocaloric nutrition for the first week of ICU stay. ^{35, 37} Consider early and progressive nutrition delivery in the high nutrition risk or malnourished		20-25 25-30	1.2-2.0 1.2-2.0
patient. ³⁵ plus AKI (no dialysis) ⁷ plus AKI (with dialysis) ⁷			1-1.3 1.3-1.7

Adjusted weight	Fluid per day	OR
40 – 60kg	1.5-2L	30-35mL/kg ⁷ with allowances for extra losses via drains etc.
60 – 80kg	2-2.5L	Note: some caution should be used with elderly patients who
>80kg	2.5 -3L	may have reduced cardiac/renal function (20-25mL/kg ³⁸
		suggested starting point for IV fluids)
		Al 2.1-2.6L of fluid per day for adults ³⁹

References:

- 1. Foley, N., Teasell, R., Bhogal, S., Speechley, M. 2011. *Nutrition Interventions following stroke, the Evidence-based review of stroke rehabilitation*. http://www.ebrsr.com/evidence-review/16-nutritional-interventions-following-stroke
- 2. Stroke Foundation of Australia, (2019). Chapter 6 Managing Complications. *Clinical guidelines for stroke management*, Stroke Foundation pp22-26 https://files.magicapp.org/guideline/f65fa365-39d1-4aec-ac05-dac5ab3dd5f2/published guideline 6184-8 1.pdf
- 3. Bischoff, S. C., Escher, J. et al. 2020. ESPEN practical guideline: Clinical Nutrition in inflammatory bowel disease. *Clinical Nutrition*, 39: 632-653. https://doi.org/10.1016/J.CLNU.2019.11.002
- 4. Volkert, D., Beck, AM., et al. 2019. ESPEN guideline on clinical nutrition and hydration in geriatrics. ESPEN guideline on clinical nutrition and hydration in geriatrics. *Clinical Nutrition*, 38: 10 47. https://doi.org/10.1016/J.CLNU.2018.05.024
- 5. Beck, A.M., Holst, M. (2021). Nutritional Requirements in Geriatrics. In: Geirsdóttir, Ó.G., Bell, J.J. (eds) *Interdisciplinary Nutritional Management and Care for Older Adults. Perspectives in Nursing Management and Care for Older Adults*. Springer. https://doi.org/10.1007/978-3-030-63892-4_2
- 6. NHS National Institute for Health and Clinical Excellence. 2006. Nutrition support in adults Oral nutrition support, enteral tube feeding and parenteral nutrition. http://www.nice.org.uk/CG32
- 7. Fiaccadori E, Sabatino A, et al. 2021. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. *Clinical Nutrition*. Apr;40(4):1644-1668. https://doi.org/10.1016/J.CLNU.2021.01.028
- 8. World Health Organisation. 2004. Nutrient requirements for people living with HIV/AIDS: report of a technical consultation, Geneva, 13–15 May 2003. https://apps.who.int/iris/handle/10665/42853
- 9. Findlay, M., Bauer, J., Brown, T. et al. 2011. Evidence based practice guidelines for the nutritional management of adult patients with head and neck cancer. Accessed via: http://www.cosa.org.au/
- 10. Weimann, A., Braga, M., Carli, F. et al. 2017. ESPEN guideline: Clinical nutrition in surgery. Clinical *Nutrition*. Jun;36(3):623-650. https://doi.org/10.1016/J.CLNU.2021.03.031

Government

- 11. Scrimshaw NS. Rhoades Lecture. Effect of infection on nutrient requirements. JPEN J Parenter Enteral Nutr. 1991 Nov-Dec;15(6):589-600. https://doi.org/10.1177/0148607191015006589
- 12. Morbitzer Kathryn A., Wilson William S., Chaben Alex C., Darby Adrienne, Dehne Kelly A., Brown Emily R., Rhoney Denise H., Jordan J. Dedrick, 2020. Energy Expenditure in Critically III Adult Patients With Acute Brain Injury: Indirect Calorimetry vs. Predictive Equations. *Frontiers in Neurology*, 10:1426. https://doi.org/10.3389/fneur.2019.01426
- 13. Krakau K, Omne-Ponten M, Karlsson T, Borg J, 2006. Metabolism and nutrition in patients with moderate and severe traumatic brain injury: A systematic review. *Brain Injury*, 20:345–367. https://doi.org/10.1080/02699050500487571
- 14. Chapple LA, Chapman MJ, Lange K, Deane AM, Heyland DK, 2016. Nutrition support practices in critically ill head-injured patients: A global perspective. *Critical Care*, 20:6. https://doi.org/10.1186/s13054-015-1177-1
- 15. Jacobs, D., Jacobs, D., Kudsk, K. et al. 2004. Practice Management Guidelines for Nutrition Support of the Trauma Patient. *Journal of Trauma, Injury, Infection and Critical Care*, 57: 660-679. 10.1097/01.TA.0000135348.48525.A0
- 16. Arends, J., Bodoky, G., Bozzetti, F. et al. 2006. ESPEN Guidelines on Enteral Nutrition: Non surgical oncology. *Clinical Nutrition*, 25: 245-259. https://doi.org/10.1016/j.clnu.2006.01.020
- 17. Anker, S., John, M., Pederson, P. et al. 2006. ESPEN guidelines on Enteral Nutrition: Cardiology and Pulmonology. *Clinical Nutrition*, 25(2): 311-318. https://doi.org/10.1016/j.clnu.2006.01.017
- 18. PEN nutrition. 2013. Chronic Obstructive Pulmonary Disease: key practice points www.pennutrition.com
- 19. Isenring, E., Zabel, R., et al. 2013. Updated evidence based practice guidelines for the nutritional management of patients receiving radiation therapy and/or chemotherapy. *Nutrition & Dietetics*, 70(4): 312-324. https://doi.org/10.1111/1747-0080.12013
- 20. Arvanitakis, M., Ockenga, J., et al. 2020. ESPEN guideline on clinical nutrition in acute and chronic pancreatitis *Clinical Nutrition*, 39: 612-631. https://doi.org/10.1016/J.CLNU.2020.01.004
- 21. Meier, R., Ockenga, J., Pertkiewicz, M. et al. 2006. ESPEN Guidelines on Enteral Nutrition: Pancreas. *Clinical Nutrition*, 25: 275-284. https://doi.org/10.1016/j.clnu.2006.01.019
- 22. European Pressure Ulcer Advisory Panel and National Pressure Ulcer Advisory Panel 2019. Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline. The International Guideline. www.npuap.org
- 23. Bauer, J., Ash, S., Davidson, W. et al. 2006. Evidence based practice guidelines for the nutritional management of cancer cachexia. *Nutrition & Dietetics*, 63(2): S5–S32. https://doi.org/10.1111/j.1747-0080.2006.00099.x
- 24. Lai, J.C., et al., Malnutrition, Frailty, and Sarcopenia in Patients With Cirrhosis: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 2021 https://doi.org/10.1002/hep.32049
- 25. European Association for the Study of the Liver, *EASL Clinical Practice Guidelines on nutrition in chronic liver disease*. Journal of hepatology, 2019. **70**(1): p. 172-193. https://doi.org/10.1016/j.jhep.2018.06.024
- Rousseau, A., Losser, M., Ichai, C., Berger, M. 2013. ESPEN endorsed recommendations: Nutritional therapy in major burns. *Clinical Nutrition*, 32: 497-502. https://doi.org/10.1016/j.clnu.2013.02.012
- 27. Saxby N., Painter C., et al. and the Australian and New Zealand Cystic Fibrosis Nutrition Guideline Authorship Group (2017). Nutrition Guidelines for Cystic Fibrosis in Australia and New Zealand, ed. Scott C. Bell, Thoracic Society of Australia and New Zealand, Sydney. https://www.thoracic.org.au/documents/item/1045
- 28. Queensland Government. 2018. Refeeding Syndrome in Adults (>15 year old) Identification and Management. Metro North Hospital & Health Service. https://gheps.health.gld.gov.au/ data/assets/pdf file/0042/1479957/003454.pdf
- Queensland Health, Eating Disorder Outreach Service. 2012. Ongoing management guidelines and discharge planning. http://hi.bns.health.qld.gov.au/mental_health/eating_disorder/documents/edos-ongo-man-quide.pdf

- 30. National Health and Medical Research Council: "Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes 2006". http://www.nhmrc.gov.au/publications/synopses/n35syn.htm.
- 31. Ikizler TA, Burrowes JD, Byham-Gray LD, et al, 2020. KDOQI Nutrition in CKD Guideline Work Group. KDOQI clinical practice guideline for nutrition in CKD: 2020 update. *Am J Kidney Dis.* 76(3)(suppl 1):S1-S107. https://doi.org/10.1053/j.ajkd.2020.05.006
- 32. Bellizzi V, Signoriello S, et al. 2021. No additional benefit of prescribing a very low-protein diet in patients with advanced Chronic Kidney Disease under regular nephrology care: a pragmatic, randomized, controlled trial. Am J Clin Nutr. Dec 30. https://doi.org/10.1093/ajcn/ngab417
- 33. Hahn D, Hodson EM, Fouque D. 2018. Low protein diets for non-diabetic adults with chronic kidney disease. *Cochrane Database of Systematic Reviews*, Issue 10. https://doi.org/10.1002/14651858.CD001892.pub5
- 34. Yue H, Zhou P, et al. 2020. Effect of low-protein diet on kidney function and nutrition in nephropathy: A systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition. Sep;39(9):2675-2685. https://doi.org/10.1016/j.clnu.2019.11.039
- 35. Singer P, Blaser AR, Berger MM, et al. 2019. ESPEN guideline on clinical nutrition in the intensive care unit. *Clinical Nutrition*.38(1):48-79. https://doi.org/10.1016/J.CLNU.2018.08.037
- 36. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically III Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2016;40(2):159-211. https://doi.org/10.1177/0148607115621863
- 37. Compher, C., Bingham, A., McCall, M et al. Guidelines for the provision of nutrition support therapy in the adult critically ill patient: The American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr. 2022;46(1):12-41. https://doi.org/10.1002/jpen.2267
- 38. National Institute for Health and Care Excellence. 2013. Intravenous fluid therapy in adults in hospital. http://www.nice.org.uk/guidance/cg174/evidence
- 39. National Health and Medical Research Council. 2005. Water. https://www.nrv.gov.au/sites/default/files/page_pdf/n35-water_0.pdf

