Electrolyte disturbances that are difficult to treat often indicate significant disease or coexisting ion disturbances – Seek Advice.

Unit-specific protocols for electrolyte disturbances take precedence over these guidelines.

Where several treatment options are provided, undertake in a stepwise fashion not concurrently. Sufficient time between interventions should elapse to ensure maximal response has occurred.

Rapid administration of electrolytes or correction of severe derangements may result in cardiac arrhythmias - consider cardiac monitoring.

Electrolyte solutions are incompatible with blood products, some medications and often each other. Seek advice before mixing together in an infusion or giving simultaneously via the same IV line.

1. HYPOkalaemia (Mild: 3.1–3.5mmol/L; Moderate: 2.5–3.0mmol/L; Severe: less than 2.5mmol/L)

- Plasma levels below 3.0mmol/L may result in arrhythmias. Consider cardiac monitoring.
- May be due to Total Body Deficit (where a 1mmol/L drop in plasma level represents a total body loss of 200 to 400mmol) or trans-cellular redistribution caused by a range of conditions and drugs (e.g. metabolic acidosis, diabetic ketoacidosis, insulin and salbutamol).
- If repeated, check magnesium and replace if necessary, check for medications which may decrease potassium (e.g. diuretics). Ensure potassium containing fluid is administered as necessary (see IV Fluid Guidelines).

Moderate to severe hypokalaemia

- **Treat with both IV and (where possible) oral supplementation.** Patients usually require at least 80–800mmol potassium extra in next 24 hours (i.e. 100–140mmol in total, including normal daily requirements).
- **Repeat plasma levels 4 hours after commencing treatment and review plan.**

Symptomatic hypokalaemia

- **All potassium containing infusions must be given via an infusion pump or burette.**
- **Maximum CONCENTRATION peripherally = 40mmol/L to prevent phlebitis.**
- **If maximum concentrations are exceeded; administer through a large vein with high blood flow (e.g. femoral vein) or central venous catheter.**

2. HYPOmagnesaemia (Mild: less than 0.9mmol/L; Moderate: less than 0.7mmol/L; Severe: less than 0.4mmol/L)

- Hypomagnesaemia is common in hospitalised patients, especially the severely ill.
- Magnesium may not be included with all electrolyte pathology requests. A specific request may be needed.
- Beware of repeated doses in renal impairment.

Severe or symptomatic hypomagnesaemia (e.g. tremors, weakness, swallowing difficulties, cardiac arrhythmias or seizures)

- **Correct with intravenous magnesium sulphate:**
 - » Each 5mL ampoule contains 2.47g magnesium sulphate equivalent to 10mmol magnesium.
 - **Mild hypokalaemia**
 - **Mild or asymptomatic hypokalaemia**
 - Treat with oral supplementation:
 - » Magnesium aspartate tablets 500mg (e.g. Magmira®) 1–2 tablets (1.54–3.08mmol) twice daily. Up to 6 tablets (9.24mmol) daily in divided doses may be required. Diarrhoea is a common side effect.

Severe or symptomatic hypomagnesaemia (e.g. drowsiness, headache, seizures)

- **Is a medical emergency. Consider management in an intensive care/high dependency setting. Hypertonic saline and airway access may be indicated.**

Symptomatic hypomagnesaemia (e.g. drowsiness, headache, seizures)

- **Assess fluid status:**
 - » If hypovolaemic, correct intravascular deficit with 0.9% sodium chloride (see IV Fluid Guidelines);
 - If euvoalaemic or hypervolaemic, consider potential causes such as medications (SSRI’s, diuretics, antiepileptics), conditions associated with inappropriate ADH secretion or reduced effective circulating volume (cirrhosis, cardiac failure). Manage with fluid restriction.
 - **Repeat plasma levels 6 hours after commencing treatment.**

3. HYPOnatraemia (Mild: less than 135mmol/L; Moderate: less than 130mmol/L; Severe: less than 120mmol/L)

- Seek senior advice especially if severe or symptomatic (e.g. drowsiness, headache, seizures).
- Management requires careful assessment of fluid status and biochemical indices.
- Serum sodium concentration should be increased by:
 - » Not more than 0.5mmol/L per hour;
 - » Not more than 10mmol/L in 24 hours to prevent permanent neurological injury.
- The normal mainstay of IV therapy is 0.9% sodium chloride (not hypertonic saline).

Severe or symptomatic hyponatraemia (e.g. drowsiness, headache, seizures)

- **Assess with oral supplementation:**
 - » Magnesium aspartate tablets 500mg (e.g. Magmira®) 1–2 tablets (1.54–3.08mmol) twice daily. Up to 6 tablets (9.24mmol) daily in divided doses may be required. Diarrhoea is a common side effect.

Symptomatic hyponatraemia (e.g. haemolysis, respiratory failure, cardiac arrhythmias or seizures)

- **Assess with oral supplementation:**
 - » Magnesium aspartate tablets 500mg (e.g. Magmira®) 1–2 tablets (1.54–3.08mmol) twice daily. Up to 6 tablets (9.24mmol) daily in divided doses may be required. Diarrhoea is a common side effect.

Symptomatic hyponatraemia (e.g. e.g. haemolysis, respiratory failure, cardiac arrhythmias or seizures)

- **Assess with oral supplementation:**
 - » Magnesium aspartate tablets 500mg (e.g. Magmira®) 1–2 tablets (1.54–3.08mmol) twice daily. Up to 6 tablets (9.24mmol) daily in divided doses may be required. Diarrhoea is a common side effect.

4. HYPOphosphataemia (Mild: less than 0.8mmol/L; Moderate: less than 0.5mmol/L; Severe: less than 0.3mmol/L)

- Phosphate does not normally need replacement until less than 0.6mmol/L except if alcoholism/withdrawal, malnutrition, re-feeding syndrome, receiving TPN, renal phosphate wasting, recovery from diabetic ketoacidosis or respiratory failure.
- Sodium dihydrogen phosphate contains 10mmol of phosphate and 10mmol of sodium in a 10mL ampoule. It contains zero potassium.

Severe or symptomatic hypophosphataemia (e.g. haemolysis, respiratory failure, cardiac arrhythmias)

- **Correct with intravenous phosphate:**
 - » Each 5mL ampoule contains 2.47g magnesium sulphate equivalent to 10mmol magnesium.
 - **Mild hypophosphataemia**
 - **Mild or asymptomatic hypophosphataemia**
 - Treat with oral supplementation:
 - » Effervescent phosphate tablets 500mg (e.g. Phosphate Sandoz®) 1–2 tablets (16.1–32.2mmol) up to three times a day. Diarrhoea is a common side effect.
 - If not tolerated: one ampoule (10mmol) of sodium dihydrogen phosphate in 250mL of 0.9% sodium chloride infused slowly over 2 to 6 hours into a large vein.

Severe or symptomatic hypophosphataemia (e.g. pertoral/finger paraesthesia, seizures, tetany, positive Chvostek’s/Trousseau’s or high risk of becoming symptomatic (e.g. post-parathyroidectomy)

- **Correct with intravenous calcium gluconate:**
 - » Administer two ampoules (4.4mmol) in 100mL 0.9% sodium chloride over 20 minutes.

5. HYPOcalcemia (Mild: less than 2.15mmol/L corrected; Moderate: less than 1.9mmol/L corrected; Severe: less than 1.5mmol/L corrected or 0.75mmol/L (IONISED))

Moderate to severe hypocalcaemia

- **Treat with oral supplementation:**
 - » Effervescent calcium tablets 1g (Calcisource®) 1–2 tablets (25–50mmol) daily;
 - Calcium carbonate 150mg tablets, equivalent to 600mg of calcium, (Calcitrate®) 1–2 tablets (15–30mmol) daily. Give with food.
• Electrolyte disturbances that are difficult to treat often indicate significant disease or coexisting ion disturbances – Seek Advice.
• Unit-specific protocols for electrolyte disturbances take precedence over these guidelines.
• Where several treatment options are provided, undertake in a stepwise fashion not concurrently. Sufficient time between interventions should elapse to ensure maximal response has occurred.
• Rapid administration of electrolytes or correction of severe derangements may result in cardiac arrhythmias - consider cardiac monitoring.

Electrolyte disturbances

1. HYPERkalaemia (Mild: 5.1–5.9mmol/L, Moderate: 6.0–6.4mmol/L, Severe: more than 6.5mmol/L)

• Consider clinical situation. If asymptomatic confirm level. Consider possibility of sample haemolysis.
• Hyperkalaemia is more sinister in setting of acute rapid rise rather than chronic renal failure and, in patients with pre-existing heart failure.
• Severe or symptomatic (e.g. muscular weakness and/or ECG changes [e.g. peaked T waves])
 » Institute continuous ECG monitoring.
 » Seek senior advice. Consider:
 a. Protecting heart:
 i. If ECG abnormalities are present - calcium gluconate one ampoule (2.2mmol of calcium) IV via a central vein or slowly over 2–3 minutes into a large vein. If ECG does not normalise within 10 minutes, dose may be repeated (to a total of 0.1mmol/kg).
 b. Reducing serum potassium levels:
 i. Intravenous glucose and insulin - glucose 50% 50mL with 10 units short-acting insulin IV over 5 minutes. Monitor blood glucose levels hourly; and/OR
 ii. Nebulised salbutamol 10 mg (2 of the 5mg/2.5mL nebules); and/OR
 iii. If metabolic acidosis present, sodium bicarbonate 8.4% 50mL IV over 5–15 minutes.
• Removing potassium from the body:
 » Resuming potassium from the body:
 a. Resonium-A® - give 15–30g orally up to four times daily or 60g as a retention enema daily; and/OR
 b. Dialysis - urgent dialysis may be required.
 » Reviewing medication:
 a. Withhold any potassium retaining drugs (ACE inhibitors, angiotensin receptor antagonists, potassium sparing diuretics) or potassium supplements.
 b. Monitor potassium level hourly.

Mild to moderate or asymptomatic
• Place on a low potassium diet.
• Withhold potassium-containing drugs (e.g. Span-K®) and if possible, drugs that may cause or aggravate hyperkalaemia (e.g. spironolactone, trimethoprim, β-blockers, NSAIDs, ACE inhibitors, angiotensin receptor antagonists, digoxin).
• Monitor potassium levels every 12 hours.

Long term management
• Review for possible reversible causes of hyperkalaemia (e.g. haemolysis, acidosis, renal impairment).

2. HYPERcalcaemia (Mild: 3.5–4.0mmol/L, Moderate: 3.0–3.2mmol/L, Severe more than 3.2mmol/L – corrected)

• Hypercalcaemia is most commonly due to primary hyperparathyroidism OR hypercalcaemia associated with malignancy.
• Severe or symptomatic (e.g. lethargy, coma, ECG changes [shortened QT interval])
 » Rehydration - intravenous sodium chloride 0.9%. Volume infused should be sufficient to maintain a large urine output (e.g. 60mL/hr). Seek senior advice.
 » Bisphosphonate therapy - see local guidelines or if not available, consider intravenous disodium pamidronate.
 » Corrected Calcium (mmol/L) | Total Pamidronate Dose (mg)
 | 3.0–3.5 | 30–60
 | 3.5–4.0 | 90
 | More than 4.0 | 90; and consider dialysis

•Administer as infusion in 250mL sodium chloride 0.9% or glucose 5%.
• Infusion over 30 to 90 minutes at a rate not exceeding 1mg/minute.

N.B. Renal impairment: Pamidronate is not recommended in patients with CrCl less than 30mL/min. Seek expert advice. In less severe renal impairment, reduce the infusion rate to 20mg/hr.

Long term management
• Review for possible causes including diet/supplements (vitamin D or calcium); sarcoidosis and other granulomatous disease; drug causes such as calcitriol (Rocaltril®) excess or thiazide diuretics; and hypercalcaemia due to spinal cord injury and/or immobility.

3. HYPERnatraemia (Mild to Moderate: 145–159mmol/L, Severe: more than 160mmol/L)

• Seek senior advice especially if severe or symptomatic.
• Often due to fluid deficit - refer to IV Fluid Guideline.
• Oral fluid replacement, with water, is safest.
• Severe or symptomatic (e.g. hyperthermia, delirium, seizures, coma)
 » A medical emergency. Consider management in an intensive care/high dependency setting.
 » Serum sodium concentration should be reduced by:
 a. Not more than 0.5mmol/L per hour;
 b. Not more than 10mmol/L in 24 hours to prevent permanent neurological injury.
 c. Intravenous fluids without added sodium (generally glucose 5%) may be needed.
 d. Monitor every 4 hours in the first 24 hours.

4. HYPERmagnesaemia (Severe: 2.5mmol/L)

• May be deliberate in pregnancy. Magnesium is used to treat/ prevent eclampsia/severe pre-eclampsia. Always contact Obstetrician.
• Severe or symptomatic (e.g. loss of deep tendon reflexes, respiratory depression, paralysis, reduced consciousness)
 » Intravenous calcium gluconate provides immediate but transient antagonism of toxic effects.
 » One ampoule (2.2mmol) of calcium gluconate in 0.9% sodium chloride should be administered over 5 minutes. Repeat if necessary.
• Kidney excretion should be promoted with intravenous sodium chloride 0.9%, aiming for a urine output of at least 50 mL per hour.
• If this urine output can’t be achieved, intravenous frusemide can be added.
• Dialysis may be needed.
• Review diet/medication use for antacids, enemas, supplements and lithium.