<table>
<thead>
<tr>
<th>Version</th>
<th>Author</th>
<th>Version Description</th>
<th>Released Date</th>
<th>Approved for Release by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Health Planning and Infrastructure Division, Queensland Health</td>
<td>First public release</td>
<td>28 May 2012</td>
<td>Deputy Director-General (DDG) – Health Planning & Infrastructure Division</td>
</tr>
<tr>
<td>1.1</td>
<td>Health Infrastructure Branch</td>
<td>Name changed from Capital Infrastructure Minimum Requirements to CIR Approved</td>
<td>5 April 2013</td>
<td>DDG-System Support Services</td>
</tr>
<tr>
<td>2.0</td>
<td>Health Infrastructure Branch</td>
<td>Second public release. Updated information regarding Legionella, infection control and other minor edits</td>
<td>3 September 2014</td>
<td>Deputy Director-General, Office of the Director-General</td>
</tr>
<tr>
<td>3.0</td>
<td>Capital and Asset Services Branch</td>
<td>Updated to align with the new water risk management provisions under the Public Health Act 2005 (February 2017)</td>
<td>7 August 2017</td>
<td>Deputy Director-General, Corporate Services Division</td>
</tr>
</tbody>
</table>
Contents

How to use this document .. 1
Interpretation .. 1
Functional design brief stages ... 2
Service departments or units ... 4
Relationship to other volumes ... 4
1. Strategic level introduction and overview .. 5
 1.1 Purpose and context of the functional design brief .. 6
 1.2 Overview of the project .. 6
 1.3 Interpretation ... 7
 1.4 Glossary .. 7
2. Project background .. 8
 2.1 Vision for the project ... 9
 2.2 Project objectives .. 9
3. Project Scope ... 10
4. Strategic policy and direction .. 11
 4.1 Facility or Hospital and Health Service overview ... 11
 4.2 Strategic models of care .. 12
5. Facility profile .. 14
 5.1 Demographics .. 14
 5.2 Activity projections summary ... 14
 5.3 Treatment space projections .. 15
 5.4 Summary of facility departments/units ... 15
6. Key operational and design principles ... 17
 6.1 Facility design objectives ... 17
 6.2 Operational principles and design .. 18
 6.3 Patient environment ... 19
 6.4 Staff environment .. 19
 6.5 Interior design .. 20
 6.6 Equity of access ... 20
 6.7 Education and research .. 21
 6.8 Future proofing, flexibility and technology ... 21
7. Facility wide approaches ... 23
 7.1 Access and hours of operation/zones .. 23
 7.2 Admissions and discharges ... 24
 7.3 Building services ... 24
 7.4 Car parking .. 25
 7.5 Commercial and retail .. 25
Functional description and relationships

8.1 Functional areas ... 43
8.2 Nature of functional relationships .. 44
8.3 Specification of Functional Relationships 45

Workforce

9.1 Current and projected workforce ... 47
9.2 Clinical, clinical support and non-clinical workforce profile 47
9.3 Workforce impact on design ... 48

Accommodation brief

10. The following sections outline the type of information required to complete the full functional design brief ... 50

Clinical service department/unit

11.1 Scope of service ... 52
11.2 Model of care .. 52
11.3 Workforce for the department/unit 53
11.4 Policies impacting on built environment 54
11.5 Operational Description .. 55
11.6 Functional relationships .. 55
11.7 Staging of built capacity .. 56
11.8 Future service developments and innovations .. 56
11.9 Specific design requirements .. 57
11.10 Schedule of accommodation ... 58
11.11 Summary of Changes to Model of Care ... 58

12. Clinical support services department/unit ... 59
12.1 Scope of service ... 59
12.2 Model of service delivery .. 59
12.3 Workforce for the department/unit .. 59
12.4 Policies impacting on built environment ... 60
12.5 Operational description .. 60
12.6 Functional relationships .. 61
12.7 Staging of built capacity .. 61
12.8 Future service developments and innovations .. 62
12.9 Specific design requirements .. 62
12.10 Schedule of accommodation ... 63
12.11 Summary of changes to model of service delivery ... 63

13. Non-clinical services department/unit ... 64
13.1 Scope of service ... 64
13.2 Model of service delivery .. 64
13.3 Workforce for the department/unit .. 65
13.4 Policies impacting on built environment ... 65
13.5 Operational description .. 65
13.6 Functional relationships .. 66
13.7 Staging of built capacity .. 66
13.8 Future service developments and innovations .. 67
13.9 Specific design requirements .. 67
13.10 Schedule of accommodation ... 68
13.11 Summary of changes to model of service delivery ... 68

Appendix A List of functional planning units ... 70
Appendix B Referenced documents .. 71
Appendix C Terms and definitions ... 77

List of Tables
Table 1: Functional relationship classifications and definitions 46

List of Figures
Figure 1: Queensland Health capital infrastructure requirements context 3
Figure 2: levels for models of care or model of service delivery 13
Figure 3: Elements of models of care and models of service delivery 13
Figure 4: example of whole of facility relationships diagram 44
HOW TO USE THIS DOCUMENT

Interpretation
This volume defines the standard format for the functional design brief component of the Capital Infrastructure Requirements (CIR).

Examples of completed functional design brief are in Volume 2, Section 3. It is recommended while reading this manual to refer to the examples to facilitate understanding of the required information.

This volume is a template containing three types of text.

The first type of text is the text in the grey box. This text box describes the nature of the content in that section and indicates the phase of the project.

Example of a content text box:

Content
Write a brief description of the project which might include:
- scope of the project
- how the project fits into the state wide and Hospital and Health Service (HHS) health service infrastructure
- Clinical Services Capability Framework (CSCF) levels
- desired outcomes
- special points of interest.

The second type of text is normal text. This text box contains the rationale for the section, or the explanation of why this section is required by planners, architects and engineers. The rationale will be found in every section of the template.

Example of rationale text:

Rationale
The description of the project provides a brief and succinct overview that creates a picture of the project for the first time reader. It describes the scale of the project for the planners, architects and engineers and indeed anyone involved in the project.

It provides a reason for the project and explains how it meets the state and facility or HHS health service requirements.

The third type of text is in a clear text box. This text box is a checkpoint or stage in the process that needs particular attention as it has implications which can impact on the process or final outcome. It is only found in some sections.

Example of a clear text box:

Checkpoint
The models of care are critical elements in the functional design brief. Clinical services are described as a model of care and non-clinical services are described as a model of service delivery.
Functional design brief stages
The functional design brief will be completed in two stages. The first stage is completed at a strategic level and is developed as the first step in the facility design process. The strategic level functional design brief relies upon a number of other documents and processes, for example the health services plan and strategic asset planning. The strategic level functional design brief is used in the strategic infrastructure assessment process and may be used in the strategic assessment of service requirements.

The second stage is the full functional design brief. If a decision has been made to progress the facility project, the full functional design brief is completed. The full brief will require a review of the material in the strategic level with the addition of a section for each relevant department or unit section also completed. The full brief is used in the preliminary evaluation and in master planning of the facility site. See Figure 1.

Strategic level functional design brief
The strategic level functional design brief consists of the following sections and is completed for all capital infrastructure projects:
• introduction and overview
• project background
• project scope
• strategic policy and direction
• facility profile
• summary of facility departments/units
• key operational and design principles
• facility wide approaches
• functional description and relationships
• workforce
• accommodation brief.

Full functional design brief
The full functional design brief is made up of all of the sections in the strategic functional design brief plus a section for each relevant clinical, clinical support and non-clinical service within the scope of the project. The information provided in the strategic functional design brief provides the context for the detailed briefing of each functional unit.

The sections to be completed include:
• review of material provided in the strategic level of the functional design brief
• scope of service
• model of care/service delivery
• workforce
• policies impacting on built environment
• operational description
• functional relationships
• staging of built capacity
• future service developments and innovations
• specific design requirements
• schedule of accommodation
• summary of changes to model of care/service delivery.
Figure 1: Queensland Health capital infrastructure requirements context

The orange service planning section reflects key elements only of the Queensland Health Departments’ service planning process that is related to infrastructure planning.

The green facility design section is only operationalised if a decision is made to consider a capital solution to address the service planning outcomes.

The blue Project Assurance and Gateway processes are not covered in detail and key elements of these processes are included only to provide context for the service planning and facility design process.
Service departments or units
A typical list of service departments and organisational units is listed in Appendix A. It is provided by way of example and as a guide only. Each facility and project will have its own organisational profile and relevant service unit list. Reference should also be made to the functional planning unit list in CIR Volume 2.1, Functional design brief principles.

Relationship to other volumes
This functional design brief format (Volume 2, Section 2) must be read and understood in the context of the Capital Infrastructure Requirements 2017 (CIR). The CIR Volume 2.1, Functional design brief principles, provides the overall Queensland Health context for facility planning.

The functional design brief describes the facility from a functional point of view as distinct from the minimum technical requirements for the facility. The CIR architectural and engineering volumes set the minimum technical requirements for the facility and cross reference these to the functional design brief for detail on design requirements.
1. STRATEGIC LEVEL INTRODUCTION AND OVERVIEW

Content
Provide a brief overview of functional design brief methodology, limitations and intent. Also include reference to a glossary of terms and definitions used during development of design which is appended.

An example of intent: ‘the briefing information provided seeks to inform a design solution that enables efficient, accessible and safe delivery of service, future flexibility and adaptability in design, and that offers a pleasing, safe and comfortable environment for patients at all times.’

Rationale
CIR Volume 2.2, Functional design brief manual, may act as a single information source for some stakeholders to gain a general understanding of the project.

CIR Volume 2.2, Functional design brief manual, describes the scope of the new health facility as it translates into the built environment. This relationship between scope and design is based on an understanding of the projections for future service demand and models of service delivery.

CIR Volume 2.2, Functional design brief manual, describes at a high level the process by which the functional design brief has been developed. If there have been any limitations to information supplied that planners and consultants should know about, they are included in this section. Readers will also need to understand how this functional design brief is intended to fit into the whole-of-government capital approval process.

The design detail provided in this functional design brief will be used to inform strategic infrastructure assessment for the facility/site. It will also be used in the development of the project assurance framework, strategic assessment of service requirement document.

To enable the functional design brief document to be read and understood easily and without ambiguity; any terminology, definitions and abbreviations need to be explained.
1.1 Purpose and context of the functional design brief

Rationale
The purpose of the functional design brief is to identify the department’s minimum design and operational requirements for the facility. The strategic functional design brief is developed as part of the strategic assessment of service requirements of a potential project.

Once the project is funded or a decision to proceed is made, the full functional design brief is reconfirmed at the strategic level detail and is completed for each unit/department of the facility.

1.2 Overview of the project

Rationale
The overview of the project provides a succinct description that clearly articulates the fundamental elements, and creates a picture of the project for the first time reader. It describes the scale of the project, for example number of beds, number and types of buildings, for the planners, architects and engineers and anyone key project members.

The overview provides the rationale for the project and explains how it meets the state and facility or HHS health service requirements.

In particular the scope statement within the overview nominates the list of services and their CSCF levels for the facility, so that it may be translated into the built solution.

The overview includes clear statements about the size of the project and its service delivery expectations, through the articulation of the objectives and outcomes. These may be service delivery and design outcomes. Topics that could be covered include service continuity, connectivity and integration, seamless access to services between the original build and the new facility. Outcomes also indicate the desired aesthetic of the facility.
1.3 Interpretation

Content
Include any general instructions to assist in readability or transparency of the document. For example references to:
- Queensland Government Blueprint for better healthcare February 2013
- Queensland Health Strategic Plan 2012-16 (2013 update)
- specific policy
- health service planning.

Rationale
Instructions and information may be required to assist readers in how to interpret and apply the contents of the functional design brief. For example, other volumes of the CIR may need to be referred to.

Where necessary, readers need to be aware that the functional design brief relies on other policies, guidelines, legislation and standards. The functional design brief does not negate the responsibilities under statutory requirements, legislation, codes and standards relating to capital infrastructure.

1.4 Glossary

Content
Provide an alphabetical list of items specific to the document with definitions or explanation.

Provide cross reference to any appendices that contain explanation of terms.

Rationale
A glossary will assist in consistent interpretation of the functional design brief by all disciplines in the key stakeholder and consultant groups over time.
2. PROJECT BACKGROUND

Content
Provide information on the need for a service, including drivers and outcomes. Include a brief history of previous activities and decisions on the project, such as government commitments and prior planning documents.

List all planning and other documents which have preceded the functional design brief and have been used for background and content material. In particular provide detail of any approved model of care, health planning documents and any other master planning, functional or design briefing documents that may relate to the project.

Consider the operating environment, and key drivers for change in Queensland Health’s future operations.

The drivers for change comprise:
- a growing and ageing population
- economic, fiscal and health technology impacts
- a growing burden of disease, particularly in relation to chronic conditions
- the health impacts of socioeconomic disadvantage and cultural and linguistic diversity
- the rate of burden of disease from all causes among Aboriginal and Torres Strait Islander Queenslanders
- the dispersion of Queensland’s population across the state
- workforce challenges
- climate change.

Rationale
It is important for readers to know about prior decisions by government or other authorities that impact the project. For example election commitment statements may provide the basis of rationale for the project.

Planners, architects and engineers will need to know if there are other documents being relied upon that will provide more detail on the project.

Checkpoint
This information is important information for the business case and provides background context for decision making.
2.1 Vision for the project

Content
Outline the vision for the project, that is, the aspirational future direction. Describe desired outcomes as they relate to the values of the organisation. The vision is a short statement—perhaps of one sentence or paragraph which will encompass ideas relating to:

- future directions
- benefit to the population
- desired quality to meet service requirements and models of care
- nature of the facility
- how the environment, innovation, research and concepts of design link to the delivery of care.

Rationale
Readers of the functional design brief will want to understand what values and aspirations the facility or HHS leadership has for the facility and what change the project will bring about. This helps designers create a mental image of the facility. The statement of vision assists in aligning consultant thinking with client requirements.

2.2 Project objectives

Content
Outline the aims and objectives for the project. Project objectives will be measureable, clearly defined, specific and achievable through a series of steps. Describe what the facility or HHS wants to be achieved through the project—what will define its success.

The objectives will be a key link to benefits realisation plans and the building performance evaluation process.

The objectives should describe simply how the HHS will know that the project has succeeded in meeting its service requirements.

Rationale
The articulation of objectives provides detail, definition and clarity to the development of the functional design brief. All the participants of a project need to understand what the organisation intends to achieve through the project. This is essential shared knowledge that will assist in leading everyone to a single solution.
3. PROJECT SCOPE

Content
Outline the inclusions and exclusions of the project. These can include both infrastructure and service level activities. The level of detail in this section needs to be sufficient to provide input to both capital and operational costing models. Scoping detail will be informed by the health service plan.

Some examples of inclusions are (and should not be limited to):
- inpatient beds, multiday and single day
- numbers of ambulatory spaces
- number and type of operating rooms
- number and type of imaging modalities
- if there are several buildings within one project, they need to be described.

Some examples of exclusions are:
- components of facilities may be outsourced such as car parking, and production pharmacy
- some parts or modalities of services may not be included such as mammography or Positron Emission Tomography (PET)
- the build may include a childcare centre but the operation will be outsourced.

Staging must be considered in describing scope. Facilities may have services gradually brought on line over a number of planning and construction phases. The scoping detail must include what is in each proposed stage, with clear articulation of the parameters for the current development.

Rationale
Planners, architects and engineers will use scope description as the basis of facility design, including building size, placement of buildings and their relationship to any existing facilities on the site. Scoping detail will provide the rationale for costing of the project. Once scope is matched to budget, it will have a direct relationship to design, and will inform any applications to vary the project. Clearly articulated project scope is also essential to the development of the facility site strategic infrastructure assessment and subsequent master planning for the site.
4. STRATEGIC POLICY AND DIRECTION

4.1 Facility or Hospital and Health Service overview

4.1.1. Facility or Hospital and Health Service health planning

Content
This section briefly summarises the facility level plan where it exists or HHS health service plan which has already been developed. A map of the facility or HHS should be provided. This section describes the role and capacity of the facility within the local, regional and state wide context.

Rationale
This section is required to describe the context and geography of the facility or HHS in which the facility will sit so that planners, architects and engineers understand any particular design requirements relating to location, climate, distances travelled and so forth. It also explains how the facility fits into the other facilities and their services within the facility or HHS and perhaps surrounding facility or HHS’s. Design can be heavily impacted by factors such as site access, climate events, autonomy levels for operation of engineering services and disaster planning.

Architects will also need to understand the nature of spaces required for services based on their size, location of operation, how they are accessed and if they need to be physically or electronically linked.

4.1.2. Organisational chart

Content
Provide a pictorial overview or organisation chart of the facility or HHS governance and describe the key elements.

Rationale
All participants, both departmental staff and consultants will need to understand who is responsible for the functioning of each area of service delivery and for managing the project within the facility or HHS. Stakeholders will also need to understand the nature of the control mechanisms in place including decision making bodies and the head decision maker for the facility or HHS.

4.1.3. List of Hospital and Health Service services

Content
Provide a list in a table format of all the services provided by the whole facility/ HHS under the health service plan, their capacity and their CSCF service levels.

Rationale
This section explains how the project facility fits with other facilities and their services within the facility or HHS and may include surrounding facility or HHS.

Architects will need to understand the nature of spaces required for services based on their size, location of operation, how they are accessed and if they need to be physically or electronically linked.
Facility planners and architects will reference the Australasian Health Facility Guidelines (AusHFG) for the requirements of each level of service (referred to as role delineation in AusHFG), including their inter-dependencies.

Where a service is delivered across the facility or HHS, designers need to know which elements are required in the new or refurbished facility.

4.2 Strategic models of care

Content
Describe the services from the HHS perspective. What is the model for services within and across services within the HHS that determines the pathway or flow for patient movement. Strategic level services are those that govern or define other service delivery models, for example hub and spoke or a HHS wide service that covers more than one facility within the HHS.

What is the role of any clinical or service unit?
The design should promote and support an integrated model of care with the primary goals of ensuring that clients receive quality, coordinated care, and that gaps, duplication and fragmentation in the provision of services are minimised. The overarching vision in Queensland’s future health facilities is an integrated healthcare approach where the primary focus continues to shift to the patient/consumer rather than a system which focuses on the health service provider and health delivery setting.

Within the department’s framework, patients will move seamlessly within the primary and secondary setting depending upon their health condition and its severity. This healthcare approach will not be limited to patient care based on treatment and rehabilitation. Integration of care will also include activity between services, such as those provided by other departmental services/areas, with external providers and partners, and consumers, collaborating to deliver illness prevention and health promotion.

Rationale
There are options for the access and orientation of facilities within their sites and in the relative placement of functions and services to other facilities. An understanding of how it is intended that services are accessed and used by patients will assist architects and facility planners to design a facility layout that achieves the project objectives, for example patient focussed care.

Planners and facility designers will use this information for the site facility strategic infrastructure assessment to determine which services need to be provided from the facility and which services may be provided from other sites. It will also inform requirements for expansion and future proofing.

The facility or HHS model of care will also form part of the rationale for the strategic business case.

Checkpoint
The models of care are critical elements in the functional design brief. Clinical services are described as a model of care and non-clinical support services are described as a model of service delivery. Figure 2 demonstrates the levels of hierarchy that are used to describe these models in a functional design brief. In the strategic level brief the strategic and operational level models get described. In the full functional design brief the local level models get described.
Three Levels for Models of Care or Model of Service Delivery

1. Strategic level – Local Health and Hospital Network Models. How services relate across the network

2. Operational level – Facility Models. How services relate across and within the designated facility

3. Local level – Departmental Models. How services are delivered within a department

Figure 2: levels for models of care or model of service delivery

Each level in the model below needs to be described. The figure below illustrates the key elements that need to be captured for each model at each level. The designers need to know what the service is, how it is to be provided, who will provide it, where it will be provided and when it will be provided. These five elements are not exclusive but are the key elements for a functional design brief.

Elements of Models of Care and Models of Service Delivery

Figure 3: Elements of models of care and models of service delivery
5. FACILITY PROFILE

The AusHFG defines a facility as ‘a complex of buildings, structures, roads and associated equipment, such as a facility or healthcare facility that represents a single management unit for financial, operational maintenance or other purposes.’

Overall, this section provides a mid-level summary of the health service plan elements, such as demographic profile, role delineation of services, access patterns, general service trends, for example length of stay, home based care and community needs.

Planners and designers use this section to describe the building blocks for the accommodation brief, that is, the type, number and sizes of spaces required for the facility. From this information they can assemble an initial list of spaces required.

The facility profile is made up of information on demographics, activity projections summary and bed and bed equivalent projections as well as a summary of facility departments/units.

5.1 Demographics

Content
This section covers summary level population data and trends to explain the basis of the activity projections as it relates to the scope of works for the facility. The table of individual services by role delineation level is referred to.

Rationale
Where a service is delivered across the facility or HHS, designers need to know which elements or components of the service are required in the new or refurbished facility.

This detail also provides an understanding of possible design solution alternatives. The department requires design consultants to use the AusHFG for types, numbers and sizes of spaces for each service area. The AusHFG include specification of this spatial information for each role delineation level. Role delineation also sets a number of inter dependencies between services which must be understood by architects in designing a whole facility.

Understanding the demographics of the population using the facility is important for planners, for example if the population is older, then the design needs to be responsive to an older population’s needs.

5.2 Activity projections summary

Content
This section summarises the projected activity for the facility based on the service planning undertaken. Summarise any key points relating to actual activity, length of stay and bed occupancy rates and changes to models of care. Provide a table of projected activity, by current and future date targets. This information will be available in the health service plan.

Rationale
Facility planners and designers will need to understand projected activity figures in order to ensure that numbers and types of spaces planned are adequate to deliver the service now and into the future. They must develop an accommodation brief that has enough spaces for service delivery based on accepted standards and reasonable performance parameters. They must also turn individual space requirements into groups of spaces, that is, functional departments and units.

5.3 Treatment space projections

Content
In accordance with health service planning this section provides a further level of detail on functional spaces. Total bed numbers and treatment spaces are divided up into their types. Provide a table of beds, bed alternatives, imaging modalities, ambulatory and emergency treatment spaces. Define current and future capacities congruent with the health service planning.

Include figures for current capacity as well as projected capacity for the new or redeveloped facility.

Rationale
Facility planners and designers will use this detailed level of information to develop the schedule of accommodation for each department/unit. They will also undertake some validation of activity projections to the numbers of rooms by their types, to ensure the overall size of the facility is capable of delivering the described services.

The schedule of accommodation will facilitate additional costing detail. It will also be used to determine the gross floor area of the facility. This information will be used in the strategic infrastructure assessment and the strategic assessment level business case.

If a facility is being refurbished an exercise will be undertaken to look at ‘best fit’ within current floor plates.

5.4 Summary of facility departments/units

Content
Provide a table which details each facility organisational unit included in the project brief. Specify the CSCF levels where relevant. The following is provided by way of example:

<table>
<thead>
<tr>
<th>Type</th>
<th>Planning department/unit</th>
<th>Brief description</th>
<th>CSCF level (if relevant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>Medical unit 3A</td>
<td>30 bed inpatient unit</td>
<td>4</td>
</tr>
<tr>
<td>Clinical</td>
<td>Medical unit 3B</td>
<td>30 bed inpatient unit</td>
<td>4</td>
</tr>
<tr>
<td>Clinical</td>
<td>Surgical unit 4A</td>
<td>30 bed inpatient unit</td>
<td>4</td>
</tr>
<tr>
<td>Clinical</td>
<td>Surgical unit 4B</td>
<td>30 bed inpatient unit</td>
<td>4</td>
</tr>
<tr>
<td>Clinical support</td>
<td>Medical imaging</td>
<td>Diagnostic and interventional service</td>
<td>5</td>
</tr>
<tr>
<td>Clinical support</td>
<td>Pathology</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Non-clinical</td>
<td>Food services</td>
<td>Cook chill with 350 bed capacity</td>
<td></td>
</tr>
<tr>
<td>Non-clinical</td>
<td>Security</td>
<td>Whole of facility</td>
<td></td>
</tr>
</tbody>
</table>

Rationale
Architects and engineers will use this information in the layout of the departments within the facility and within the department. These relationships are the building blocks of facility...
design. They will influence the shape, size and orientation of the departments within the building.

This information is a most important input into the strategic infrastructure assessment for the facility site.

Knowing this information at initial stages of a project may assist in preventing rework of design in later stages thereby saving cost to the project.
6. **KEY OPERATIONAL AND DESIGN PRINCIPLES**

Throughout this section the key operational and design policies and principles used to underpin decision making and provide a point of reference during design are described. The scope of this section covers the whole of facility. Where the scope of services for a project fit within an existing or proposed larger facility, this section will cover all of the operational elements that impact on design.

Individual units must be designed in the context of whole of facility policies and principles unless otherwise stated in the respective dedicated unit section. The design and functional requirements detailed for individual departments/units should therefore be read in conjunction with this section.

Planners and architects need to understand how the facility or HHS sees the facility performing in its role of service delivery. Statements of operational and design principles in the functional design brief assist in establishing this understanding at an early stage. Ultimately principles translate into design features which may have cost implications that vary from the standard cost modelling. Some principles affect the whole of building design such as layout, choice of materials, finishes and choice of equipment. If these are known at functional design brief stage, they can be considered in the cost modelling.

By stating operational and design principles, the facility or HHS provides direction on design priorities that are necessary to deliver on functional requirements. Architects and engineers are informed by these requirements. Clearer articulation of principles will support more relevant and effective design of the facility.

6.1 Facility design objectives

Content

Describe any specific design objectives for this facility. Design objectives are a means to translate the intention of the models of care and service delivery into the built form.

These may be high level objectives for example the facility’s relationship with the urban landscape, its building form and build quality, the desired building and engineering performance, construction and functionality.

Design objectives relate to performance outcomes for either the whole facility or for specific service units in the facility. If there are particular design features or outcomes that are desired, they may be stated in this section.

The more information provided at this stage the more likely it is that facility performance outcomes can be built from the objectives and translated into design.

Rationale

A wide range of people will benefit from the detail provided in this section. The architects and engineers will know in the initial stages of planning if there are special considerations to be included in design. Specific requirements can also be translated into facility design performance outcomes.
The strategic infrastructure assessment stage of planning prior to completion of the full functional design brief will provide advance information in relation to design objectives including their impact.

Cost implications may be considered in the early stages of the project and built into the budget. This will form part of the strategic assessment business case.

If design objectives are known from inception, they may be built into post evaluation tools.

Checkpoint

In completing this section you should refer to CIR, Volume 2.1, Section 9, *Functional design brief principles*, which covers facility design criteria. This provides a good summary of issues that may influence facility design objectives.

6.2 Operational principles and design

Content

Describe in this section those principles that underpin the models of care and service delivery.

Things that might be included are aspects associated with:
- desired efficiency of patient flows within the facility
- separation of public, staff, patient, goods flows within the facility
- access
- safety and quality of service delivery
- staff safety and wellbeing
- way finding
- patient focussed care
- evidence based design
- ICT objectives
- innovation
- facilitating patient safety, and ensuring high indoor environment and safe water quality.

Include detailed objectives for services that are new or will have a change of model or practice for example from centralised to decentralised model. Note specific design objectives or requirements for these services to meet the new model and include the critical factors relating to design. For example, the decision to have multiple medical imaging units rather than one centralised unit, will have significant impact on space, engineering services and ICT requirements.

Be specific for certain groups of patients who have defined requirements.

Rationale

Here the facility or HHS has the opportunity to directly influence the design of the facility. While some principles may seem obvious, translation into design and built environment needs to be facilitated by transparency of purpose. By stating them, architects and engineers are obliged to consider how they might be translated into performance outcomes for the facility. Embedding operational principles into the project objectives will significantly assist in them being implemented.

The cost implications of principles once known can be assessed and included in budget considerations.
Operational and design principles will also be used to inform transition and change management planning.

6.3 Patient environment

Content
Describe in this section specific design considerations to support patient care and patient experience of the facility especially as required to meet the models of care. Make note of any differences between new build and refurbished areas and what outcomes are required in relation to these two situations.

Examples of patient environment considerations:
- All patient areas both inpatient and ambulatory will have access to outdoor areas
- Facilitate patient independence
- Areas suitable for assembly of large groups of family and friends to be provided
- Provide features that will enable the patient to control their environment
- Access to private discussion space between patients and staff must be provided throughout the facility
- Facilitate patient safety, and ensure high indoor environment and safe water quality.

Rationale
Here the facility or HHS has the opportunity to directly influence the design of the facility. While some principles may seem obvious, translation into design and built environment needs to be facilitated by transparency of purpose. By stating them, architects and engineers are obliged to consider how they might be translated into performance outcomes for the facility. Embedding patient environment principles into the project objectives will significantly assist in them being implemented.

The cost implications of principles once known can be assessed and included in budget considerations.

Patient environment principles may also be used to inform transition and change management planning.

6.4 Staff environment

Content
Describe in this section specific design considerations to facilitate the staff work environment and experience of the facility.

This could include things such as access to natural light, high indoor environment and safe water quality, or a particular staff amenities, such as a breast feeding room or staff cafeteria.

Rationale
Staff environment principles can be used to inform design as well as transition and change management planning.

Here the facility or HHS has the opportunity to state design requirements to meet the workforce planning objectives of the facility.

Translation into design and built environment needs to be facilitated by transparency of purpose. Where the facility or HHS states desired design outcomes, architects and engineers will consider how they might be translated into performance outcomes for the
facility. Embedding staff environment principles into the project objectives will significantly assist in them being implemented.

The cost implications of principles once known can be assessed and included in budget considerations.

6.5 Interior design

Content
Describe in this section specific design considerations relating to interior design. This may relate to internal layout features or to materials, finishes and colours. This section may be approached on a default basis. Many specifications for interiors are already covered by legislation, policy and standards. This section provides any special additional points required to support function for the facility.

Include description of any special requirements for acoustic performance.

Include interior design needs for different population groups, for example children, adults and indigenous groups have different design requirements.

Rationale
While there are policies, codes and regulations that cover aspects of interior design, each facility is designed to suit its particular service requirements.

Translation into design and built environment needs to be facilitated by transparency of purpose. Where the facility or HHS states desired design outcomes, architects and engineers will consider how they might be translated into performance outcomes for the facility. Embedding interior design principles into the project objectives will significantly assist in them being implemented.

The cost implications of principles once known can be assessed and included in budget considerations.

6.6 Equity of access

Content
The *Disability Discrimination Act 1992*, other legislation and policy requirements as they relate to design must be met and need not be restated.

Describe in this section any considerations and design outcomes that are additional to legislated requirements. This section might include further discretionary principles to improve equity of access, or issues that pertain specifically to the facility.

The requirements of indigenous, multicultural services and interpreters need to also be considered in this section.

Rationale
The statement of design outcomes relating to access will assist in their translation into the built form.

The cost implications of additional access principles once known can be assessed and included in budget considerations.
6.7 Education and research

Content
Describe in this section any considerations that are specific to the facility that are needed to support the education and research functions and models of service delivery.

For example, are education spaces centralised or dispersed throughout the facility, and can meeting rooms be designed for use as education venues.

Content in this section needs to be cross referenced to the content in the specific education and research department section.

Include consideration of simulation spaces for teaching and training, library/knowledge management and ICT requirements.

Rationale
Education and research models of service delivery and requirements differ from facility to facility. By stating the particular needs of the facility, they can then be translated into design.

These requirements are then included in the performance objectives and outcomes for the facility. Once they are embedded in the project objectives, it is more likely that the desired principles will be implemented.

The cost implications of principles once known can be assessed and included in budget considerations.

Education and research principles may also be used to inform transition and change management planning.

6.8 Future proofing, flexibility and technology

Content
Providing for future-proofing is the ability of the design to not prohibit but anticipate future expansion and future modification. It does not include the provision of future requirements, but rather the ability of the design to allow the future requirements to be added to the facility without major operational and cost impacts.

In this section a range of flexibility and technology requirements covering the whole facility can be described, based on health service planning projections, horizon scanning of potential changes to models of care or technology developments. The list may initially be at high level with more detail being added as department/unit functional requirements are fully developed.

Some examples of future whole of facility functional requirements might include a provision for a certain percentage of expansion space, implementation of radio frequency identification technology, automated guided vehicles and self-registration kiosks.

At department/unit level particular treatments of spaces may be required to enable future revision of their use without disrupting service delivery unduly.

Technology considerations may be either clinical, clinical support or non-clinical in nature.

Rationale
Designing for service expansion or change in technology can have significant impact on spatial allocation and engineering services provision. These impacts translate into project
costs. A full understanding of those implications will assist in achieving more efficient and effective design.

The emergence of new ideas and technology is growing at an increasing pace. Architects need to include the knowledge of facility or HHS staff on their specialist areas, particularly developments in clinical models.

This section presents in a summary form, a range of the future flexibility and technology items to planners, architects and engineers.

This section may also be used in the strategic assessment business case to describe how potential changes to future service delivery can be effected through the facility project.
7. FACILITY WIDE APPROACHES

This section describes a variety of policies, models or functions that will apply across the whole facility. This includes a project where the functional design brief covers only part of a facility or is a unit within a facility. The headings provided are a starting point and may be expanded upon. The approaches will change over time and vary according to facility size, location and function. Other examples of facility wide approaches may include equipment management, volunteers, switchboard, management of revenue and chaplaincy.

This section of the functional design brief will provide a summary in one place of common facility wide approaches that must be considered by architects and engineers in design. In providing this information it is expected that design will facilitate the implementation of these facility wide approaches. These items may have an impact on the accommodation brief and schedule of accommodation.

The inclusion of these items in the functional design brief is one point in the implementation of policy and common standards.

Some of these items may impact the strategic infrastructure assessment. All facility wide approaches will be assessed for impact on the cost model.

Facility wide approaches need to be understood and developed within the context of the global facility service matrix for the facility and its context within the HHS.

Checkpoint

This is where models of care and models of service delivery are described at an operational level. The facility wide approaches define how many of the services relate across and within the facility or HHS. Describing these models of care and service delivery ensures that the interrelationships of services and facility functions are coordinated. This information is the second level in the model of care hierarchy. See Figure 2.

7.1 Access and hours of operation/zones

Content

In this section requirements for access across the whole facility are covered. This includes hours of operation for public and for staff for specific areas of the facility.

This sub-section provides detail on hours and days of operation for all departments/units and services. Include hours for visitors to the facility.

Provide detail on which departments and entry points will be business hours and which will be 24 hours a day, seven days a week access.

Rationale

Facility designers will use this information to develop plans for zoning the facility for operational, engineering and security purposes. Architects apply information about hours of operation to the layout of the facility to promote efficiency of use and safety for all facility users.

The placement and control of public and staff access and movement throughout the facility will have operational implications for the life of the facility. This information will also be applied to planning for safety of staff and the public.
Architects, planners and engineers will use this information in the layout of departments and especially access routes and placement of entrances. Design and security are interlinked so information on operating hours is fundamental to planning of both these facility aspects.

7.2 Admissions and discharges

Content
Describe the model for managing admissions and discharges across the facility, including relevant policies. Where will admissions and discharges occur and how will they be managed. List the technology that is required.

Note any specific design requirements relating to the model of service delivery.

Factors to consider:
- planned and unplanned admissions
- preadmission policy and procedure
- discharge policy and procedure
- retrieval services
- transfer from ambulatory care to inpatient status rules:
 - over 23 hours
 - by length of stay
 - by type of procedure
- whether there is a transit unit.

Rationale
Planners, architects and engineers will use this information in the layout of departments and services, and the development of the accommodation brief and schedule of accommodation.

The approach and model for admissions and discharges management across the facility will be used in the strategic infrastructure assessment for the facility site.

The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

7.3 Building services

Content
Provide in this section a summary list of common approaches relating to building services, across the facility, including, but not limited to, how water quality will be maintained. This includes a summary level description on what services are affected and any key design requirements. A summary of any future directions may be included, particularly as they relate to space, equipment and technology requirements.

The content of this section is cross referenced to other department level sections within the functional design brief.

Some examples of common approaches include security, placement and access to plant space, which services are reticulated, relationship of building information systems to ICT.

CIR, Volume 4, Engineering and infrastructure, provides extensive detail on building services requirements, including common approaches.
Rationale
Planners, architects and engineers will use this information in the design of engineering services, layout of departments, and the development of the accommodation brief and schedule of accommodation.

The approach and model for building services management across the facility will be used in the strategic infrastructure assessment for the facility site.

The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

7.4 Car parking

Content
In this section, the approach for car parking management throughout the facility is described. This includes summary level description on what car parks are provided across the facility, how they are managed, the number of car spaces and as well as any key design requirements. Considerations to include:

- information on special parking requirements for particular patient or staff groups relating to adjacencies, for example emergency department and other temporary parking.
- all drop off or set down off points.
- requirements for security and access to car parks.
- whether there are any commercial arrangements for car parking.
- relevant departmental and facility or HHS level policies and procedures.
- ambulatory care services locations, transit unit, women’s services (birthing), emergency, renal and cancer patients.

Rationale
Planners, architects and engineers will use this information in the design of the facility overall, especially locations of access roads and staff and patient access routes. It will also be used in the development of the accommodation brief and schedule of accommodation.

The approach for car parking management across the facility will be used in the strategic infrastructure assessment for the facility site.

Any specific requirements for car parking management will be costed for both capital and operational purposes.

Costing information will be included in the strategic assessment and subsequent business cases.

7.5 Commercial and retail

Content
Briefly describe the approach to commercial and retail spaces throughout the facility. This includes summary level description of commercial and retail i.e. rationale, what services will be provided across the facility and how they are managed as well as any key design requirements.

A summary of any future directions may be included, particularly as they relate to space, equipment and technology requirements.
Note any relevant departmental and facility or HHS level policies. Include information on what the project is responsible for providing for these areas, for example shell space, partial or total fit out, based on the anticipated commercial arrangements.

This section needs to be cross referenced to the non-clinical support services—commercial and retail chapter.

Rationale
The placement of commercial and retail tenancies has an impact on facility design. Retail functions, such as cafes and pharmacies have specific location and access requirements within the building. Planning for these inclusions is essential in the early stages of development.

Planners, architects and engineers will use this information in the layout of the facility and in design of access to the facility. It will also be used in the development of the accommodation brief and schedule of accommodation.

The approach for commercial and retail management across the facility will be used in the strategic infrastructure assessment for the facility site.

Any specific requirements for commercial and retail areas will be costed for capital purposes.

Costing information, particularly projected revenue will be included in the strategic assessment and subsequent business cases.

7.6 Disaster provision

Content
This section summarises specific requirements relating to disaster preparedness that may translate into spatial, building and ICT services or other technology impacts. Any relevant departmental and facility or HHS policies and whole-of-government obligations should be noted.

Provide detail of clinical areas that will be used for disaster functions.

Describe whether the facility has a role in a disaster or pandemic response.

Provide detail of how essential services, including water quality, will be maintained in the event of a disaster.

The provisions of the Building Code of Australia and referenced standards should be taken as default requirements.

Rationale
Each facility or HHS has its own requirements for disaster planning which need to be articulated in the functional design brief. There are a range of options that can be taken in relation to disaster planning, which have varying levels of cost.

The approach for disaster management across the facility will be used in the strategic infrastructure assessment for the facility site.

The specific requirements for disaster preparedness will be costed for both capital and operational purposes. Some options for disaster planning are very costly and will need to be assessed against relevant responsibilities and planning beyond the facility.
Costing information will be included in the strategic assessment and subsequent business cases.

Planners, architects and engineers will use this information in the layout of departments and specific spatial elements within departments, engineering services specifications and for equipment placement. It will be used in the development of the accommodation brief and schedule of accommodation.

7.7 Environmental services

Content

In this section, the approach, model and/or operational requirements for cleaning/environmental services management throughout the facility must be described. This includes summary level description on what services are provided across the facility, how they are managed, how they will be delivered and any key design requirements. A summary of any future directions in cleaning and environmental management may be included, particularly as they relate to space, equipment and technology requirements.

The content of this section is cross referenced to other department level sections within the functional design brief and is assumed to be consistent with the section on non-clinical support services—environmental.

Points to consider:

- links to waste management
- whether the service, or part of it, is outsourced or not
- finishes requirements
- flammable materials
- management of courtyards
- infection prevention and control policies and standards
- after hours cleaning in clinical units
- water treatment and maintaining water quality.

Rationale

Models of service delivery for cleaning services vary between health facilities. The particular requirements of this facility need to be clearly understood by designers as there may be significant differences in spatial requirements and therefore cost to the project.

Planners, architects and engineers will use this information in the layout of departments and services, access routes and the development of the accommodation brief and schedule of accommodation.

The approach and model for cleaning and environmental management across the facility will be used in the strategic infrastructure assessment for the facility site.

The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

7.8 Food services

Content

The approach, model and/or operational requirements for food services management throughout the facility is described in this section. This includes summary level description on the model of service delivery—what services are provided across the facility, how they are managed, how they are ordered, how they will be delivered and any key design
requirements. A summary of any future directions in food services management may be included, particularly as they relate to space, equipment and technology requirements.

Inpatient facilities have a need for some short order food preparation capacity and this should be assessed in all cases.

The content of this section is cross referenced to other department level sections within the functional design brief and is assumed to be consistent with the section on non-clinical support services—food services, loading dock, waste management, commercial/retail and all other department sections that are involved in the chain of food management.

Consideration should be given to food safety standards.

Rationale
The clear articulation of the food service model of service delivery is required to inform design for not only the food services department, but also every inpatient unit and every other department using their services.

Some food management models are more labour intensive and have specific fit out requirements. It is important that this information is known at the initial stages of planning to ensure that the facility is designed for any future requirements.

Options for delivering food services vary according to patient and staff requirements, refurbishment or new build, or degree of on site preparation. These options have significantly different spatial and cost implications which need to be understood by designers. Having clear design requirements will assist in avoiding future design rework and the cost it incurs.

Planners, architects and engineers will use this information in determining the layout of departments and the development of the accommodation brief and schedule of accommodation.

The approach and model for food services management across the facility will be used in the strategic infrastructure assessment for the facility site.

The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

7.9 Information communications and technology services

Content
Provide a list of common approaches relating to ICT services, across the facility. This includes summary level description on what services are affected and any key design requirements. A summary of any future directions may be included, particularly as they relate to space, equipment and technology requirements and information security.

The content of this section is cross referenced to other department level sections within the functional design brief in particular non-clinical support services—ICT.

CIR, Volume 4 provides some detail on ICT services requirements including common approaches.

The key source of information for this section will be the department’s information directorate or its equivalent. There are many areas of policy and standards that need to be considered.
in ICT facility planning from communications requirements to hardware, software applications and records management.

Rationale
Planners, architects and engineers will use this information in the layout of departments and services, and the development of the accommodation brief and schedule of accommodation.

The approach and model for ICT services management across the facility will be used in the strategic infrastructure assessment for the facility site.

The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

Checkpoint
ICT requirements are one of the complex and increasing cost elements of a facility project. The effective management of these requirements begins with their clear articulation in the functional design brief.
7.10 Infection prevention and control

Content
Infection prevention and control requirements are determined in the department’s Prevention and Control of Healthcare Associated Infection (HAI) Policy, by the facility or HHS policy and procedures and the AusHFG infection control requirements. The design elements that are required to facilitate these infection prevention and control practices must include detail as illustrated by the following (but not limited to):

- sufficient disinfectant residual should be present in the water supply system to limit microbial water quality risk
- sensor taps are to be provided in clinical areas as well as at the entries to units/departments
- hand basins are to be provided as per the AusHFG as follows:
 - ‘clinical’ standard hand basins defined as have non-touch electronic taps and minimum splash design, to be located in all bedrooms, utility rooms and treatment spaces
 - clinical hand basins to be located at entrances of units and in corridors with a small shelf above to place items while cleaning hands
 - hand basins not to be fitted with overflow valves
- use of visual prompts/signs/aids to remind and direct staff and visitors to hand basins
- personal protective equipment (PPE) dispensers to be placed next to all hand basins
- alcohol based hand rub dispensers must be provided in all clinical units where there is patient contact and clinical area interfaces.

Isolation rooms
Provide detail on specific targets, that is, types and distribution of isolation rooms throughout the facility. Include a table if required. Reference should be made to the AusHFG, Part D: Infection Prevention and Control as well as the Australian Standards’ HB 260–2003 Facility Acquired Infections—Engineering Down the Risk.

Include projected need for Class N/Type 5 or Class P/Type 5 isolation room numbers as determined by the facility for example may be based on data collection over at least a one year period.

Include the ratio of Class N isolation rooms for this facility as a number per beds. Include where Class P isolation room will be provided for example one for emergency and one for the intensive care unit.

Consideration should also be given to the model of care for ambulatory infectious management.

Rationale
Each facility has models of care/service delivery relating to infection prevention and control as this is a primary element in patient safety. The particular requirements of the facility need to be clearly understood by designers and engineers as there are differing spatial impacts and costs for various options.

Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. The requirement for a range of infection control mechanisms will form part of the capital and operational costing for the strategic assessment and subsequent business cases.
The number and placement of isolation rooms may also impact on model of care and require consideration in the change management plan.

7.11 Linen

Content
Describe the approach, model and/or operational requirements for linen management throughout the facility. This includes summary level description on what services are provided across the facility, how they are managed, how they will be delivered and any key design requirements. A summary of any future directions in linen management may be included, particularly as they relate to space, equipment and technology requirements.

The content of this section is cross referenced to infection control and other department level sections within the functional design brief and is assumed to be consistent with the section on non-clinical support services—linen, loading dock, waste management and all other department sections that are involved in the chain of linen management.

Rationale
Each facility operates within its own specific conditions. Considerations for the management of linen will be different between refurbished and new builds.

Designers will require the articulation of how the facility or HHS intends to manage linen across the facility, in particular any issues relating to movement between units and buildings.

Planners, architects and engineers will use this information in the layout of departments and services, access routes and the development of the accommodation brief and schedule of accommodation.

The approach and model for linen management across the facility will be used in the strategic infrastructure assessment for the facility site.

The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

7.12 Mail

Content
Describe the approach, model and/or operational requirements for mail services management throughout the facility. This includes summary level description on what services are provided across the facility, how they are managed, how they will be delivered and any key design requirements. A summary of any future directions in mail services management may be included, particularly as they relate to space, equipment and technology requirements.

If there are retailers or commercial areas within the facility, include a statement on how they will receive mail.

Rationale
Options for the management of mail vary. The model needs to be clear so that spatial requirements are fully understood by architects.

Planners, architects and engineers will use this information in the layout of departments as well as design of staff access routes. It will also be used in the development of the accommodation brief and schedule of accommodation.
The approach for mail management across the facility will be used in the strategic infrastructure assessment for the facility site.

Any specific requirements for mail management will be costed for both capital and operational purposes.

Costing information will be included in the strategic assessment and subsequent business cases.

7.13 Medical imaging

Content

Describe the approach, model and/or operational requirements for medical imaging, including nuclear medicine if being provided, throughout the facility. This includes summary level description on what services are provided across the facility, how they are managed, how they will be delivered and any key design requirements. A summary of any future directions in medical imaging management may be included, particularly as they relate to space, equipment and technology requirements.

Include detail about the replacement of medical imaging equipment.

Include a table summarising modalities and their location. Note any services that are not in scope, that is, changes to current scope or that may be provided by external providers.

Points to consider:

- occasions of service projections by location of clinical service type
- centralisation or decentralisation of core services for example locate some modalities in emergency, operating rooms and ambulatory care rather than one central service
- locations and options for mobile equipment and services for example inpatient units, intensive care unit
- locations and options for satellite equipment and services for example emergency
- wireless requirements
- digitisation of medical imaging information and images
- access throughout facility to medical imaging radiology information systems and picture archiving and communications systems
- central storage of medical imaging information in data/server room
- relationship to nuclear medicine
- relationship to interventional medical imaging
- space and ICT requirements of future modalities
- access for maintenance, repair and replacement of modalities.
- the content of this section is cross referenced to other department level sections within the functional design brief and is assumed to be consistent with the section on clinical support services—medical imaging.

Rationale

There are a number of models for the distribution of imaging modalities and each has differing spatial and cost impact. The model required by the facility or HHS must be clear.

Architects and engineers will rely on this information in the layout of departments and services, access routes for patients, staff and technology and the development of the accommodation brief and schedule of accommodation.
The approach and model for medical imaging management across the facility will be used in the strategic infrastructure assessment for the facility site.

The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

7.14 **Medication management**

Content

Describe the model and operational requirements for medication management throughout the facility. This includes summary level description on what services are provided across the facility, how they are managed, how they will be delivered and any key design requirements. A summary of any future directions in medication management may be included, particularly as they relate to space, equipment and technology requirements.

Points to consider:

- current and future Queensland Health policy on medication management
- service requirements of the CSCF levels for the facility
- requirements for production pharmacy
- satellite pharmacies for example oncology
- method of managing drugs at individual inpatient level
- securing drugs of interest i.e. S4s that do not have dangerous drug provisions
- technology that assist in the prevention of medication errors, such as Pixus
- pneumatic tube system
- location of bulk iv store
- staff access to after-hours drugs
- managing payments for drugs
- relationship to private pharmacy if any
- relative staffing for each service delivery model
- requirements of other facilities which rely on this service
- opportunities for adoption of new technology, for example automated dispensing.
- the content of this section is cross referenced to other department level sections within the functional design brief and is assumed to be consistent with the section on clinical support services—pharmacy and other department sections that are involved in the chain of medication management, such as loading dock, supply and cashiers.

Rationale

The clear articulation of the medication model of service delivery is required to inform design for not only the pharmacy department, but also every inpatient unit, operating room suite, emergency department and every other department using pharmacy services.

Some medication management models are more labour intensive and have specific fit out requirements. It is important that this information is known at the initial stages of planning to ensure that the facility is designed for any future requirements.

Having clear design requirements will assist in avoiding future design rework and the cost it incurs.

Planners, architects and engineers will use this information in determining adjacencies, the layout of departments and the development of the accommodation brief and schedule of accommodation.
The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

7.15 Patient and operational flows

Content
The following principles apply to the whole of facility patient and operational flows:

- provide access to patients and members of the public without disrupting workflow of clinical and operational staff
- separate patient and public flows in all clinical units and give preference to separation of patient and public when transiting between clinical units
- provide a dedicated lift for hotel services including delivery of goods and removal of waste and dirty linen, and delivery of food and clean linen
- no access for patients and public to any back of house areas
- preference to be given for ‘back of house’ pathway for the deceased
- for specialist units:
 - **interventional suite** requires separation of dirty and clean flows
 - provide a peripheral area for arrival and de-boxing of goods for **interventional suite**
 - provide a dedicated staff entry to units including: **interventional suite**, **intensive care**, **coronary care**, **medical imaging** and **emergency department dedicated entry**.

Rationale
Applying principles of patient, operational and material flows provides efficient and safe movement of patients, staff, the public, supply and waste. Options for flows of patients and materials can vary and have significantly different spatial and cost implications which need to be understood by designers. Having clear flow design requirements will assist in avoiding future design rework and the cost it incurs.

Facility planners, architects and engineers will use this information in the layout of the facility and in the design of access to the facility. This information will be used in the development of the accommodation brief and schedule of accommodation.

7.16 Patient safety and quality

Content
Describe the approach to patient safety and state specific provisions for patient safety across the facility for both inpatients and outpatients.

Include consideration of particular patient groups, such as children and child protection cases.

The provisions of the legislation are taken as default requirements. Please list departmental and facility or HHS level policies, procedures and standards that must be applied.

Consider specific requirements for mental health services.

Rationale
Each facility or HHS has requirements relating to patient safety that need to be clearly understood by architects and engineers. Stating them in the functional design brief will assist in their translation into the built design.
Planners, architects and engineers will use this information in the layout of departments and specific spatial elements within departments, as well as design of patient access. It will also be used in the development of the accommodation brief and schedule of accommodation.

The approach for patient safety management across the facility will be used in the strategic infrastructure assessment for the facility site.

Any specific requirements for patient safety will be costed for both capital and operational purposes.

Costing information will be included in the strategic assessment and subsequent business cases.

7.17 Pneumatic tube systems

Content
Provide detail on what size tube system is required, what will be transported through the tube system, which department/units will have stations, where stations will be located within units, station model type in each location, placement of station control panels, any requirements for dedicated point to point transfers such as emergency to pathology, intervention suite to pathology, intensive care unit to pathology. System performance requirements should also be included, such as (not limited to) minimum transfer times for certain items, number of transfer stations permitted, limitations of travel distance.

Consideration needs to be given to existing pneumatic tube systems within the facility/ies and whether there needs to be a seamless integration of the existing system to the new one that is, the same brand and size system.

Consideration needs to be given for a large bore pneumatic tube system to allow for use for other purposes.

Rationale
Pneumatic tube systems have significant impact on design spaces and cost. This information will directly affect design options and layouts and the cost of the facility. The pneumatic tube system may have impact space required for plant.

The inclusion of a pneumatic tube system in a facility will have a range of implications for other service units and how they operate. Understanding this key technology component early in the project will assist in developing related models of service delivery.

7.18 Room configurations and percentage of single rooms

Content
Provide detail on targets for bed mix and patient room configurations required to support the model of care. These may vary between clinical units. Describe any performance features for patient accommodation such as special features for the inpatient bedroom, for example isolation rooms, bariatric rooms.

Rationale
Each facility will have particular models of care which need to be supported by specific department design features. Bed configurations need to be described so that they are effectively translated by architects into department layouts. This information will directly affect design options and layouts and the cost of the facility. These items may have an impact on the accommodation brief and schedule of accommodation.
The inclusion of these items in the functional design brief is one point in the implementation of departmental and facility or HHS policy and common standards.

Costing information will be included in the strategic assessment and subsequent business cases.

7.19 Security

Content

Provide a summary of security approach for the facility. Note any areas or departments that require specific focus. Briefly summarise what services will be provided across the facility and how they will be managed. Include any security services that will be run from the facility to other facilities or services. Alternatively make note if the service is outsourced.

Make note of any specific design requirements.

In particular note considerations relating to refurbished areas and new build areas. This section needs to be cross referenced to the section for non-clinical support services—security and relevant whole of facility approaches, such as hours of operation.

Rationale

Security requirements are unique to each facility as they relate to physical layout, location, access points and many other factors. Security provisions are becoming increasingly reliant on technology and are increasing in cost. Understanding facility or HHS requirements will assist architects and engineers to achieve a more efficient and effective design.

Planners, architects and engineers will use this information in the layout of departments and services, design of security access and internal access routes. It will also be used in the development of the accommodation brief and schedule of accommodation.

The approach for management of security across the facility will be used in the strategic infrastructure assessment for the facility site.

The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

Checkpoint

Further information on security principles that impact design, is included in CIR, *Volume 4.1, Engineering principles*, Section 4.4. Refer to this section when completing the functional design brief for this area.
7.20 Shared space approaches

Content
Provide detail on specific requirements or targets for use of shared spaces throughout the facility, particularly as they might be required to support models of service delivery.

Some examples of shared space approaches are:
- entry points shared by services
- all meeting rooms are on a common booking system
- large meeting rooms may be used for public functions
- one common waiting space may be provided for several ambulatory units
- multiple use of ambulatory areas by more than one clinic type
- equipment stores
- centralised equipment store
- central bed store.

Rationale
This information will directly affect design options and layouts and the cost of the facility. These items may have an impact on the accommodation brief and schedule of accommodation as there will be opportunities for creating efficiencies in use of space.

The inclusion of these items in the functional design brief is a stage in the implementation of policy and common standards where they have been developed to support models of service delivery.

7.21 Staff amenities

Content
Provide summary level detail of any specific design considerations or requirements for staff amenities. Generally staff amenities will be supplied on the basis of relevant policy, legislation and standards so this section is for listing additional requirements.

Staff amenities includes consideration of access to breast feeding facilities, first aid equipment and room, staff lockers, change rooms, personal care rooms, car parking and bike parking. While architects are required to ensure that statutory requirements are met, any additional or specific requirements should be noted in this section.

Rationale
Staff amenities will be supplied of the basis of policy, legislation and standards. If there are additional requirements or a particular approach that the facility or HHS would like taken, then it needs to be documented in the functional design brief.

Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example, changes to grouping of amenities.

The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.
7.22 Telehealth

Content
Briefly describe the approach for Telehealth throughout the facility. This includes summary level description on what services will be provided across the facility and how they are managed as well as any key design requirements.

Describe the role the Telehealth service in the facility plays within the broader health system.

A summary of any future directions may be included, particularly as they relate to space, equipment and technology requirements.

Note any relevant departmental and facility or HHS level policies.

This section needs to be cross referenced to the non-clinical support services—Telehealth section as well as education and research.

Rationale
There are multiple options for the delivery of Telehealth services. The designers will need to understand which options apply for the project.

Planners, architects and engineers will use this information in the design of the facility ICT services and layout of spaces affected. It will also be used in the development of the accommodation brief and schedule of accommodation.

The approach for Telehealth management across the facility will be used in the strategic infrastructure assessment for the facility site.

Any specific requirements for Telehealth management will be costed for both capital and operational purposes.

Costing information will be included in the strategic assessment and subsequent business cases.

7.23 Transport and access for patients, staff and visitors

Content
Describe the model for managing patient transport to and from the facility and also how patients, visitors and staff gain access throughout the facility.

List the modes of transport that need to be considered. Include relevant policies.

Note any specific design requirements including emergency vehicle access.

Rationale
The facilities being planned will be in a variety of locations relative to their urban setting and other health services. Design of the facility and its site may be impacted by certain requirements for access, for example public transport.

Planners, architects and engineers will use this information in the layout of the facility and its services, road and pedestrian pathway access as well as internal access routes. It will also be used in the development of the accommodation brief and schedule of accommodation.

The approach for management of patient transport and access of patients, staff and visitors across the facility will be used in the strategic infrastructure assessment for the facility site.
The model of service delivery will be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

7.24 Visiting hours

Content
Provide a summary of visiting hours to the facility, noting which departments/units have differing arrangements. A table could be provided. Include relevant policies.

Note any specific design requirements.

This section needs to be cross referenced to other department level sections in the functional design brief that have details on visiting hours.

Rationale
Visiting hours vary between facilities and have an impact on planning of access routes as well as security considerations. An understanding of facility or HHS requirements is essential to effective design.

Planners, architects and engineers will use this information in the layout of departments and services, design of security access and internal access routes. It will also be used in the development of the accommodation brief and schedule of accommodation.

The approach for management of visiting hours across the facility will be used in the strategic infrastructure assessment for the facility site.

7.25 Waste management

Content
Describe the approach, model and/or operational requirements for waste management throughout the facility. This includes summary level description on what services are provided across the facility, how they are managed, how they will be delivered and any key design requirements. A summary of any future directions in waste management may be included, particularly as they relate to space, equipment and technology requirements.

Note any relevant departmental and facility or HHS policies in particular infection prevention and control.

Consider the role and requirements of recycling within the facility or HHS.

The content of this section is cross referenced to other department level sections within the functional design brief and is assumed to be consistent with the section on non-clinical support services—waste, loading dock and all other department sections that are involved in the chain of waste management.

Rationale
There are a number of options for the management of waste in a facility which have differing spatial and cost impacts.

Architects and engineers will use this information in the layout of departments and services, access routes and the development of the accommodation brief and schedule of accommodation.

The approach and model for waste management across the facility will be used in the strategic infrastructure assessment for the facility site.
The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

7.26 Work health and safety

Content

Provide a summary of work health and safety approach for the facility. Note any areas or departments that require specific focus or design requirements. Briefly summarise what issues need to be managed in a common way across the facility and how they will be managed.

Note any specific and emerging design requirements such as bariatric care.

Note specific considerations relating to security of staff.

This subject area has comprehensive policy, legislation and standards which will be taken as default requirements. Specific departmental and facility or HHS policies should be listed.

This section needs to be cross referenced to all department level sections in the functional design brief.

Rationale

While statutory requirements will be met by architects, engineers and other contractors, each facility or HHS will need to state their own particular additional requirements.

Planners, architects and engineers will use this information in the layout of departments and specific spatial elements within departments. It will also be used in the development of the accommodation brief and schedule of accommodation.

The approach for management of work health and safety across the facility may be used in the strategic infrastructure assessment for the facility site.

The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.

7.27 Workstations and office accommodation

Content

The implementation of the workstations and office accommodation as per the Queensland Health Workplace and Office Accommodation Policy and Guidelines (2008) is described in this section.

Describe the implementation of this policy across the facility, how workspaces will be arranged for example co-locations and indicators for workstations and offices adjacencies.

Include a table of what role designations get single or double offices and the size of office.

Include any specific design considerations, for example parameters for administrative support areas such as storage requirements and multifunction devices.

Rationale

The number of types of spaces required for administrative purposes will be specific to the facility. The facility or HHS needs to provide a description of how policy is to be applied.
Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation.

The model of service delivery will also be costed for both capital and operational purposes. Costing information will be included in the strategic assessment and subsequent business cases.
8. FUNCTIONAL DESCRIPTION AND RELATIONSHIPS

Content
This section summarises the location of services within the facility including:
- vertical and horizontal adjacencies
- blocking and stacking of buildings
- key external relationships—illustrated in a bubble diagram to demonstrate zone and cluster relationships, patient flows
- key internal relationships—illustrated in diagrams to demonstrate internal clustering, patient and staff flows.

Rationale
This information is fundamental to the way the floor plate is developed. The floor plate or floor plan refers to the size and orientation of a building level. The size of a floor plate will depend on the maximum number of departments that must be collocated on that level. Inside a department, the effectiveness of design in meeting the model of care/service delivery will depend on the clarity with which the facility or HHS is able to describe the relationship of internal functions and the flows of patients and staff.

Architects and engineers will use this information in the layout of the functional areas and departments within the facility and within the context of the site. These relationships are the building blocks of facility design. They will influence the shape, size and orientation of the building.

This information is an important input into the strategic infrastructure assessment for the facility site.

Ultimately the facility design will be costed and will inform the strategic assessment and future business cases.
8.1 Functional areas

Content

Functional areas may be defined as the spaces, zones and/or groupings of areas within a facility. A department may represent one functional area or be a combination of functional areas. The following is one typical way of classifying or grouping functions within a facility:

- clinical areas
 - emergency
 - inpatient areas
 - operating or procedural suites for example operating rooms, endoscopy
 - ambulatory areas
- day only areas
- clinical support areas, for example medical imaging, pathology, pharmacy
- non-clinical support areas, for example environmental, waste, food services, security, infection control, engineering and biomedical technical services
- administration only areas
- staff and shared staff areas
 - workspaces—in clinical and clinical support areas
 - teaching and learning spaces—central or distributed spaces
 - meeting rooms
 - research space—dedicated and shared
 - multipurpose space—flexible to accommodate a range of functions
 - amenity space—including staff and public amenities
- outdoor space—therapeutic multipurpose space and other landscaped surrounds
- commercial/retail space—designated commercial or retail areas
- circulation space that is not within a department, for example corridors, stairs, ramps, lift shafts
- car parking
- central energy facility.

Services provided, bed numbers and configuration and operational policies may vary the zoning required.

The groupings of spaces within each clinical, clinical support and non-clinical support area are listed in the description of each unit or service. AusHFG will guide functional areas/spaces.

Develop a list of functional groupings for the facility.

Rationale

Architects and engineers will use this information in the layout of the functional areas and departments within the facility and within the context of the site. These relationships are the building blocks of facility design. They will influence the shape, size and orientation of the building.

This information is an important input into the strategic infrastructure assessment for the facility site.
8.2 Nature of functional relationships

Content

Functional relationships describe the physical relationships required between different areas within the facility and describe a close relationship between discrete services which form part of the clinical services and clinical support services (for example, if patients or staff typically move between the two services on a regular basis).

The functional relationships within the facility describe the need for patient and staff movements within the facility or their interdependencies. They also support the delivery of clinical services and clinical support services in accordance with the facility’s model of care.

Figure 4: example of whole of facility relationships diagram

Example Flows

- Patient
- Public/Visitor
- Staff/Facility Management
- Emergency

Legend:
- Immediate Access
- Direct Access
- Ready Access
- Routine Access

Cluster
Rationale
Architects and engineers will use this information in the layout of the functional areas and departments within the facility and within the context of the site. These relationships are the building blocks of facility design. They will influence the shape, size and orientation of the building.

This information is a most important input into the strategic infrastructure assessment for the facility site.

8.3 Specification of Functional Relationships

Content
Functional relationships may be either:
- key functional relationships between areas within the facility
- close relationships between the clinical services or clinical support services.

The functional relationships between areas within the facility and discrete services can be prioritised and quantified using a classification system as summarised in Table 1.

A table detailing the classification of relationships between departments is provided in this section.

Rationale
Architects and engineers will use this information in the layout of the functional areas and departments within the facility and within the context of the site. These relationships are the building blocks of facility design. They will influence the shape, size and orientation of the building.

This information is a most important input into the strategic infrastructure assessment for the facility site.
Table 1: Functional relationship classifications and definitions

<table>
<thead>
<tr>
<th>Classification</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| Immediate (<one minute) | • being the shortest direct, horizontal route
• the route must be an unimpeded route
• door to door travel time between the two areas or services identified as having an ‘immediate’ functional relationship must not exceed one minute. |
| Direct (<two minutes) | • being a direct horizontal or vertical route
• the route must be an unimpeded route
• door to door travel time between the two areas or services identified as having a ‘direct’ functional relationship must not exceed two minutes and there must be minimal corner turns between the two areas or services. |
| Ready (<five minutes) | • being a direct horizontal or vertical route.
• door to door travel time between the two areas or services identified as having a ‘ready’ functional relationship must not exceed five minutes. |
| Routine (>five minutes) | • being a direct horizontal or vertical route.
• door to door travel time between the two areas or services identified as having a ‘easy’ functional relationship must not exceed ten minutes. |

Rationale
Architects and engineers will use this information in the layout of the departments within the facility and within the department. These relationships are the building blocks of facility design. They will influence the shape, size and orientation of the departments within the building.

This information is a most important input into the strategic infrastructure assessment for the facility site.

Knowing this information at initial stages of a project may assist in preventing rework of design in later stages thereby saving cost to the project.
9. WORKFORCE

9.1 Current and projected workforce

Content
This section gives a total figure for the current and future staffing profile of clinical, clinical support and non-clinical staff by full time equivalents (FTE) and approximate headcount. Include information about type and percentage or numbers of staff who require either a dedicated office, workstation, can share a workstation or use a hot desk.

Include a summary of percentage growth in each type of workforce. Describe the nature of future organisational structure and roles workforce planning/force strategy. Include an explanation of the changes in models of service delivery or technology that will impact on workforce configuration.

Rationale
Workforce information is used by planners and designers for a variety of purposes: to design the size of common and public spaces, sizing of travel space or corridors, numbers of toilets, staff amenities, car parking, bike storage, retail and commercial space needs for example food court. The total size and nature of a workforce when fully understood, may lead to new and innovative ideas about use of common and shared space.

The nature of spaces in service delivery areas can change depending on the models of care underpinning choice of staff type, for example pharmacy model, nursing models. Designers need to know if staffing changes are based on new technology as it needs to be included in space and cost considerations.

Planners need workforce numbers to determine both capital and operational budgets for the facility. This information is required for strategic assessment of the project, both capital budget purposes and business cases.

9.2 Clinical, clinical support and non-clinical workforce profile

Content
For the facility scope of works, this section breaks down into the detail of each type of staff by their classification grade, giving total FTE and number of people, both current and projected.

For the purposes of the preparation of workforce information, the following definitions are used in this functional design brief.

Clinical staff grouping: refers to all staff that work within units providing direct patient care for example inpatient units, ambulatory care units, emergency department, allied health.

Clinical support staff grouping: refers to all staff who work within units that provide direct diagnostic and therapeutic support to clinical services, for example medical imaging, pathology, nuclear medicine, pharmacy.

Non-clinical staff grouping: refers to all staff that work within units that have no clinical service delivery role either direct or indirect for example housekeeping, waste management, food services, supply, and general administration.
Rationale
This level of information will be used to develop both capital and operational budgets for the facility.

Designers use this detailed information to undertake an initial validity check on the spaces required in both clinical and non-clinical areas.

This information may also be matched to individual department models of care, to better understand the full implications of any changes to operation that might translate into spatial design.

9.3 Workforce impact on design

Rationale
Facility architects and engineers will need to know what impact changes in workforce numbers may have on design. Some of the areas that would be directly affected by staff numbers are, for example:

- car parking
- staff amenities—for example change facilities at unit level and overall throughout the facility
- staff accommodation, workstations and offices
- security—access management
- sign on areas.

One possible impact of workforce information is that alternative design solutions may be required where projected numbers cannot be accommodated within a refurbished building.
10. ACCOMMODATION BRIEF

Content
The accommodation brief is a summary of the key spaces required by service type in the facility. This summary level information is only required at the strategic level of the functional design brief.

The following table provides example content:

<table>
<thead>
<tr>
<th>Unit example</th>
<th>Treatment space* example</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inpatient units</td>
<td>overnight beds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intensive Care Unit/Coronary Care Unit/Neonatal Intensive Care Unit beds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mental health acute beds</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency department</td>
<td>acute treatment cubicles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>resuscitation cubicles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>chairs/trolleys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>treatment cubicles</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perioperative services</td>
<td>operating rooms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>procedure rooms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stage 2 recovery bays</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cardiac intervention rooms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>medical imaging intervention rooms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>endoscopy rooms</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outpatient/ambulatory care units</td>
<td>consultation rooms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>treatment rooms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>procedure rooms</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day unit</td>
<td>same day medical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>same day surgical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>renal dialysis chairs/trolleys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>chemotherapy chairs/trolleys</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical imaging</td>
<td>general X-ray and fluoroscopy rooms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT rooms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MRI room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ultrasound rooms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPG room</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gamma cameras rooms</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are a number of other functional areas which may or may not be external to a patient facility that, if in scope, will also be listed on the accommodation brief. These include:

<table>
<thead>
<tr>
<th>Functional unit example</th>
<th>Input parameter example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car park–basement, covered and uncovered</td>
<td>number of car spaces</td>
</tr>
<tr>
<td>Central energy facility</td>
<td>number of chillers</td>
</tr>
<tr>
<td>Child care centre</td>
<td>number of child care spaces</td>
</tr>
</tbody>
</table>
The inputs to the accommodation brief correspond to the inputs for the Victorian facility capital planning model which has been adopted by the department as the basis of the strategic level project costing method.

Note that the contents of this table must be cross referenced to the bed table or summary in the health service planning document.

Schedule of accommodation

A complete schedule of accommodation, listing every room and space will be developed for the full functional design brief. This level of information will include a list of every single room/space in the facility by department, its AusHFG room name, size and a range of characteristics such as number of occupants, hours of use and special requirements. The detail provided on the schedule of accommodation will be usually be prepared by an architect as it requires the inclusion of statutory Building Code of Australia requirements.

* Room or space type is as defined by the AusHFG or otherwise agreed by the project.

Rationale

Strategic functional design brief

Planners and architects will use this information to formulate the first round of square metre areas for each department/function and for the whole facility. The total gross square metre area for the facility is essential input to the strategic infrastructure assessment for the facility site. Area measurements will be used for cost modelling of the project and setting of a budget.

The total gross square metre area and total budget for the project will be included in the strategic assessment business case.

Full functional design brief schedule of accommodation

Once the full schedule of accommodation is produced it will be used as the basis of the total square metre area for the project. Assuming that the project scope remains the same, as it progresses through each stage, the total square metre area may be measured against this initial estimate. The schedule of accommodation will be revised at each stage of the project and will be subject to change, usually up to the end of the design development stage.

The following sections outline the type of information required to complete the full functional design brief
In the following sections, an example chapter is provided for three different types of units: a clinical unit, clinical support unit and a non-clinical unit, as the content will vary between these types of unit.

The list of typical units provided in Appendix A is grouped by the following type of units.

1. **Clinical service unit**
 A clinical service unit is defined as a service in the facility where clinical services are provided directly to inpatients and outpatients.

2. **Clinical support service unit/department**
 A clinical support service is one with specific design requirements that supports direct clinical care to the patient. Examples include:
 - medical imaging
 - nuclear medicine
 - pharmacy
 - pathology.

3. **Non-clinical unit/department**
 A non-clinical unit is defined as a service that has specific design requirements, is essential to the functioning of a health facility but has no clinical or clinical support role. Examples include:
 - building engineering management
 - food services
 - hotel services
 - security
 - supply
 - waste management.
11. CLINICAL SERVICE DEPARTMENT/UNIT

11.1 Scope of service

Content
Describe the parameters of an inpatient or outpatient service and the types of clinical services provided as described in the CSCF. Include:
- what does this department/unit provide by types of service and numbers, for example type of inpatient bed (multiday or day only/bed or bed alternative)
- nominated CSCF level
- who is admitted to the beds from both internal facility and external sources—at a summary level
- note in particular, any exclusions to the scope of the project.

Rationale
Architects require this information to generate initial unit layouts and for the development of the schedule of accommodation. This information is central to the costing model for the budget workup and included in the preliminary business case.

11.2 Model of care

Content
Describe the model of care which has been previously developed by the facility or HHS.

Describing the functional design brief can only proceed with a documented and preferably agreed model of care.

The model of care needs to describe:
- what services are provided
- who receives them
- where they are delivered
- how they are delivered
- when they are delivered.

Rationale
Architects require this information to design unit layouts for all the departments effected and for the development of the accommodation brief and schedule of accommodation. Depending on the model, square metre areas for each department may be quite different. It is essential to know at the full functional design brief stage, each department/unit area requirement as each department/unit will form part of an overall floor layout. Changes to models of care and service delivery and their impact on space requirements can be very costly to a project if they occur after initial facility layout has been determined. It is not always possible to expand a department area due to limitations on the size of a floor plate. Understanding the model of service delivery at the functional design brief stage will save avoidable rework later in the project.
Checkpoint
This is where models of care are described at a local level. Describing these ensures that the relationships and layouts within each department are organised to support the desired model of care. It is important to ensure that the models of care described allow for efficiency of service delivery and future flexibility of services provision. This is the third level in the model of care hierarchy. See Figure 2, levels of models and care and service delivery.

Models of care must reflect contemporary thinking and be supported by evidence. The models of care should not just be driven by the views of an individual clinician (particularly if it is not a contemporary approach) as health care design needs to respond to a range of workers and models over time.

11.3 Workforce for the department/unit

Content
Within the context of activity based funding, provide a table of current and projected clinical service staffing needed to operate the unit, with the following detail:

- type of staff member by classification
- current FTE and number of people
- projected FTE and number of people.

Rationale
Unit level workforce detail is the source information which is collated into the whole of facility summary table. The summary workforce table should equal the sum of all the units detailed in the full functional design brief.

Planners and project team members will use this information to develop an operating budget and workforce and change management plan for the department which feeds into business cases.

Architects require this information to finalise the schedule of accommodation with detail of numbers of toilets and other staff amenities, size meeting and collaboration spaces and match staffing numbers generally to spaces provided.
11.4 Policies impacting on built environment

Content
This section should include detail any relevant departmental and facility or HHS policies including state wide legislation, policy and standards which may impact facility design for this particular department/unit. Some policies when applied to the design and development of either a new facility or refurbishment of an existing facility can have significant spatial and cost implications.

Consider the design impact from the application of policies, procedures and standards. For example; do they require more or less space, particular types of space, special or more costly equipment or ICT provisions?

Examples of policies and legislation that impact design:
- (Queensland) Radiation Safety Act 1999 and Radiation Safety Regulation 2010

Rationale
The project team including consultants must be aware of any policies, regulations and standards that the facility or HHS requires met. Policies, regulations and standards can have a significant cost impact on a project which needs to be built into the costing model.

By listing the policies, procedures and standards in the functional design brief, there is transparency of this information throughout the project and their impact can be readily understood.
11.5 Operational Description

Rationale
Architects require this information to design internal department layouts and for the refinement of the schedule of accommodation.

Clearly stated requirements will provide a solid foundation for design by architects. Providing this level of information, promotes clarity, avoids design rework and achieves better design outcomes for the department/unit.

11.6 Functional relationships

Content
Describe relationships based on those that happen most of the time i.e. 80 per cent of the time.

Describe the functional groups or relationships between the unit and outside departments. Group functions based on:
- where patients come from for example emergency department
- where patients go to and from while staying in the unit, for example medical imaging
- where patients go when they are discharged, for example, the transit lounge.

Describe the internal functional groupings or relationships within the department. Group functions based on:
- core clinical spaces, for example bedrooms
- spaces that support core clinical activities, for example clean utility
- non-clinical spaces that are within the clinical service delivery unit, for example workstations
- green spaces, for example open outdoor spaces.
Rationale
In this section, department or service staff describe what spaces they use and the relationship of spaces to one another. The articulation of functional relationships is best done by those people who understand the model of care and responsible for delivering care.

Architects use this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example, changes to grouping of amenities.

11.7 Staging of built capacity

Content
If there is a proposal to build the service in stages over a period of time, this should be documented here. List any special considerations relevant to staging this service capacity. In particular note specific design requirements.

Consider compatibility with existing/remaining facilities, impacts of capital infrastructure works when done in stages and timelines for staging.

Make note if a department/unit is not suitable for staging of built capacity, including the reasons for this.

Rationale
Architects require this information to design department layouts to facilitate future expansion or changes to area functions. Planning for this in the early stages of a project may avoid future rework.

For example, in large technical departments, such as medical imaging, maintenance and replacement of large complex equipment needs to be factored into design of the department. This includes requirements to place some equipment on exterior walls to avoid undue damage to assets in future and disruption to delivery of services.

11.8 Future service developments and innovations

Content
Some service areas are experiencing rapid change in models of service delivery and use of new technologies. List any developments that are imminent or on the horizon that may have an influence on design, in particular, equipment and technology.

Innovation may be defined as introducing something new and previously untried. Innovation may involve a product, piece of equipment, new process or approach, new ICT or work method. Describe any innovations planned for the department/unit.

Rationale
The project team is required to future proof the facility and provide for expansion. This information is essential to understanding what design features are required to meet future changes to service delivery.

The impact of planned innovation needs to be assessed by facility planners, architects and other consultants. Impact assessment may include changes to spatial and design requirements, building services, furniture fit out and equipment and operating costs.

The cost impact of future service developments must also be factored into the project budget, both capital and operational.
11.9 Specific design requirements

Content
This section can be approached on the premise that design requirements in the AusHFG, relevant legislation and standards will be met by default.

List any design requirements that may be additional to the AusHFG or which are not covered by the AusHFG for this facility.

List requirements due to changes in the model of care that are not covered by the AusHFG or that are considered a high priority or major concern.

Consider accommodation of families/parents within the model of care. Include any items that require special focus. Points to consider include:
- impact of shielding on clinical and non-clinical wireless enabled equipment
- observation rooms
- radiation protection
- specific acoustics
- specific technology or services
- pendants for lighting, equipment and services
- lighting
- ICT
- medical emergency team call
- water quality.

Rationale
There are a variety of options for the design of clinical units to meet differing models of care.

This information will assist the architects in producing a design that facilitates the model of care specifically for the facility.

Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example, changes to grouping of amenities.
11.10 Schedule of accommodation

Content
List the key core functional spaces for the unit. Provide the AusHFG room/space name and numbers of them, number of people using the room, non standard activities, hours of use and a comment if required.
Provide a table with the following headings:
- room tag
- room code
- room name
- standard room
- briefed area m²
- number of rooms
- subtotal of briefed area m²
- occupancy (patient, staff, visitor)
- functional description.

Comments
This schedule is an initial list and will be the basis of further work by planners and architects, as all schedules will need to be checked against statutory requirements.

Rationale
The facility or HHS provides a list of the core rooms/spaces required to delivery services according to the model or care for the facility.

Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example, changes to grouping of amenities.

This is key information for input to the costing model for the facility.

This information will be included in the strategic assessment and subsequent business cases.

11.11 Summary of Changes to Model of Care

Content
List changes to the current model of care that will have an impact on the project, in particular but not limited to spaces, equipment and technology.

Rationale
A description by the facility or HHS of their anticipated changes to the model of care provides clarity and transparency to planners and architects on expectations and special design requirements.

Changes to models of care can impact upon multiple clinical, clinical support and non-clinical services.

Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example, changes to grouping of amenities.
12. CLINICAL SUPPORT SERVICES DEPARTMENT/UNIT

12.1 Scope of service
Rationale
Architects require this information to generate initial unit layouts and for the development of the schedule of accommodation. This information is central to the costing model for the budget development which goes into the business case.

12.2 Model of service delivery
Rationale
Architects require this information to design unit layouts for all the departments affected and for the development of the accommodation brief and schedule of accommodation. Depending on the model, net m² for each department may be quite different. It is essential to know at this stage how much area a department needs as it will be fitted into an overall floor layout. Changes to models of service delivery and their impact on space requirements can be very costly to a project if they occur after initial facility layout has been determined. It is not always possible to expand a department area due to limitations on the size of a floor plate. Understanding the model of service delivery at the functional design brief stage will avoid rework later in the project.

12.3 Workforce for the department/unit
Rationale
Unit level workforce detail is the source information which is collated into the whole of facility summary table. The summary workforce table should equal the sum of all the units detailed in the full functional design brief.

Planners and project team members will use this information to develop an operating budget for the department which feeds into business cases.
Architects require this information to finalise the schedule of accommodation with detail of numbers of toilets and other staff amenities, size meeting and collaboration spaces and match staffing numbers generally to spaces provided.

12.4 Policies impacting on built environment

Content
This section should include detail any relevant policies of clinical and state wide services as well as legislation and standards. For example:

Rationale
The project team including consultants must be aware of any policies, regulations and standards the facility or HHS must adhere to. Policies, regulations and standards can have a significant cost impact on a project which needs to be built into the costing model.

By listing them in the functional design brief, there is transparency of this information throughout the project and their impact can be readily understood.

12.5 Operational description

Content
This section describes how the department functions in delivering its services. It includes hours of operation for various services, patient and staff flows, such as how patients, staff and visitors arrive, move around and leave the department.

Points to consider where there are specific considerations or requirements that are different to the whole of facility:

- access
- admission and discharge
- amenities for staff
- amenities for patients and visitors
- consumables storage
- education and training
- equipment storage
- infection prevention and control
- medical gases
- medication management
- hotel services
- security
- waste
- water supply, quality, treatment and safety.

Rationale
Architects require this information to design internal department layouts and for the refinement of the schedule of accommodation. Architects are able to design the department based on what the stated requirements are rather than making assumptions. By providing this level of information, design rework may be avoided and better design outcomes achieved for the department service.

12.6 Functional relationships

Content

Describe relationships based on those that happen most of the time i.e. 80 per cent of the time.

Describe the functional groups or relationships between the unit and outside departments. Group functions based on:
- where patients come from, for example emergency department
- where patients go to and from while staying in the unit, for example medical imaging
- where patients go when they are discharged, for example home.

Describe the internal functional groupings or relationships within the department. Group functions based on:
- core clinical spaces, for example bedrooms
- spaces that support core clinical activities, for example clean utility
- non-clinical spaces that are within the clinical service delivery unit, for example workstations
- green spaces, for example open outdoor spaces.

Rationale

This is where the staff of the service describes what spaces they use and the relationship of spaces to one another. The articulation of functional relationships is best done by those people who understand the model of care and are responsible for delivering care.

Architects use this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example changes to grouping of amenities.

12.7 Staging of built capacity

Content

If there is a proposal to build the service in stages over a period of time, this should be documented here. List any special considerations relevant to staging this service capacity.

Consider compatibility with existing/remaining facilities, impacts of capital infrastructure works when done in stages and timelines for staging. Make note in this section if a department/unit is not suitable for staging of built capacity, including the reasons.

Rationale

Architects require this information to design department layouts to facilitate future expansion or changes to area functions. Planning for this in the early stages of a project may avoid future rework.

Maintenance and replacement of large complex equipment needs to be factored into design of the department. This includes requirements to place some equipment on exterior walls to avoid undue damage to assets in future and disruption to delivery of services.
12.8 Future service developments and innovations

Content
Some service areas are experiencing rapid change in models of service delivery and use of new technologies. List any developments that are imminent or on the horizon that may have an influence on design, in particular, equipment and technology.

Innovation may be defined as introducing something new and previously untried. Innovation may involve a product, piece of equipment, new process or approach, new ICT or work method. Describe any innovations planned for the department/unit.

Rationale
The project team is required to future proof the facility and provide for expansion. This information is essential to understanding what design features are required to meet future changes to service delivery.

The impact of planned innovation needs to be assessed by facility planners, architects and other consultants. Impact assessment may include changes to spatial and design requirements, operating costs, building services, furniture fittings and equipment.

The cost impact of future service developments must also be factored into the project budget, both capital and operational.

12.9 Specific design requirements

Content
This section can be approached on the premise that design requirements in the AusHFG, relevant legislation and standards will be met by default.

List any design requirements that may be additional to the AusHFG or which are not covered by the AusHFG for this facility.

List requirements due to changes in the model of care that are not covered by the AusHFG or that are considered a high priority or of major concern.

Include any items that require special focus, for example nuclear medicine has specific requirements for dealing with radioactive isotopes.

Rationale
There are a variety of options for the design of clinical units to meet differing models of care.

This information will assist the architects in producing a design that facilitates the model of care specifically for the facility.

Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example, changes to grouping of amenities.
12.10 Schedule of accommodation

Content
List the key core functional spaces for the unit. Provide the AusHFG room/space name and numbers of them, number of people using the room, non standard activities, hours of use and a comment if required.

Provide a table with the following headings:
- room tag
- room code
- room name
- standard room
- briefed area m²
- number of rooms
- subtotal of briefed area m²
- occupancy (patient, staff, visitor)
- functional description
- comments.

This schedule is an initial list and will be the basis of further work by planners and architects, as all schedules will need to be checked against statutory requirements.

Rationale
The facility or HHS provides a list of the core rooms/spaces required to delivery services according to the model or care for the facility.

Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example changes to grouping of amenities.

This is key information for input to the costing model for the facility.

This information will be included in the strategic assessment and subsequent business cases.

12.11 Summary of changes to model of service delivery

Content
List changes to the current model of care that will have an impact on the project, in particular but not limited to spaces, equipment and technology.

Rationale
Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example changes to grouping of amenities.

Changes to models of care can impact upon multiple clinical, clinical support and non-clinical services.
13. **NON-CLINICAL SERVICES**

DEPARTMENT/UNIT

Content
Describe the parameters of the service:
- what services does it provide by types and numbers
- who receives the services, internal and external—summary.

Make note of any exclusion to the scope of the service, particularly those that might be provided in other projects for example chillers.

13.1 Scope of service

Rationale
Architects require this information to generate initial unit layouts and for the development of the schedule of accommodation. This information is central to the costing model for the budget workup which goes into the business case.

13.2 Model of service delivery

Content
Describe the model of service delivery which has been previously developed by the facility or HHS.

What services are provided, who receives them, where and how they are delivered.

Rationale
Architects require this information to design unit layouts for all the departments affected and for the development of the accommodation brief and schedule of accommodation. Depending on the model, square metre areas for each department may be quite different. It is essential to know at this stage how much area a department needs as it will be fitted into an overall floor layout. Changes to models of service delivery and their impact on space requirements can be very costly to a project if they occur after initial facility layout has been determined. It is not always as possible to expand a department area due to limitations on the size of a floor plate. Understanding the model of service delivery at the functional design brief stage will save unnecessary rework later in the project.

Checkpoint
This is where models of service delivery are described at a local level. Describing these ensures that the relationships and layouts within each department are organised to support the desired service delivery model. It is important to ensure that the models described allow for efficiency of service delivery and future flexibility of services provision. This is the third level in the model of care hierarchy. See Figure 2 Levels of models and care and service delivery.

Models of service delivery must reflect contemporary thinking and be supported by evidence. The models of care should not just be driven by the views of an individual departmental manager (particularly if it is not a contemporary approach) as health care design needs to respond to a range of workers and models over time.
13.3 Workforce for the department/unit

Content
Provide a table of current and projected staffing requirements with the following detail:
- type of staff member by classification
- current FTE and number of people
- projected FTE and number of people.

Rationale
Unit level workforce detail is the source information which is collated into the whole of facility summary table. The summary workforce table should equal the sum of all the units detailed in the full functional design brief.

Planners and project team members will use this information to develop an operating budget for the department which feeds into business cases.

Architects require this information to finalise the schedule of accommodation with detail of numbers of toilets and other staff amenities, size meeting and collaboration spaces and match staffing numbers generally to spaces provided.

13.4 Policies impacting on built environment

Content
This section should include detail any relevant policies of clinical and state wide services as well as legislation and standards. For example:

Rationale
The project team including consultants must be aware of any policies, regulations and standards that the facility or HHS must adhere to. Policies, regulations and standards can have a significant cost impact on a project which needs to be built into the costing model.

By listing them in the functional design brief, there is transparency of this information throughout the project and their impact can be readily understood.

13.5 Operational description

Content
This section describes how the department functions in delivering its services. It includes:
- hours of operation for various services
- staff and goods flows
- how goods and services arrive and leave the department
- how goods and services are delivered throughout the facility
- how staff arrive, move around and leave the department
- how visitors to the department arrive, move around and leave.

Rationale
Architects require this information to design internal department layouts and for the refinement of the schedule of accommodation. Architects are able to design the department based on what the stated requirements are rather than making assumptions. By providing this level of information, design rework may be avoided and better design outcomes achieved for the department service.

13.6 Functional relationships

Content

Describe relationships based on those that happen most of the time i.e. 80 per cent of the time.

Describe the functional groups or relationships between the unit and outside departments. Group functions based on:
- where staff and goods enter from
- where staff and goods travel to and from
- where staff travel to as they leave work.

Describe the internal functional groupings or relationships within the department. Group functions based on:
- core functional spaces, for example cleaners rooms
- spaces that support core activities, for example waste sub stores
- non-clinical spaces that are within the clinical service delivery unit
- green spaces, for example open outdoor spaces.

Rationale

This is where the staff of the service describes what spaces they use and the relationship of spaces to one another. The articulation of functional relationships is best done by those people who understand the model of care and are responsible for delivering care.

Architects use this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example, changes to grouping of amenities.

13.7 Staging of built capacity

Content

If there is a proposal to build the service in stages over a period of time, this should be documented here. List any special considerations relevant to staging this service capacity.

Consider compatibility with existing/remaining facilities, impacts of capital infrastructure works when done in stages and timelines for staging.

Make note in this section if a department/unit is not suitable for staging of built capacity, including the reasons.

Rationale

Architects require this information to design department layouts to facilitate future expansion or changes to area functions. Planning for this in the early stages of a project may avoid future rework.

Maintenance and replacement of large complex equipment needs to be factored into design of the department. This includes requirements to place some equipment on exterior walls to avoid undue damage to assets in the future and minimise disruption to delivery of services.
13.8 Future service developments and innovations

Content
Some service areas are experiencing rapid change in models of service delivery and use of new technologies. List any developments that are imminent or on the horizon that may have an influence on design, in particular, equipment and technology.

Innovation may be defined as introducing something new and previously untried. Innovation may involve a product, piece of equipment, new process or approach, new ICT or work method. Describe any innovations planned for the department/unit.

Rationale
The project team is required to future proof the facility and provide for expansion. This information is essential to understanding what design features are required to meet future changes to service delivery.

The impact of planned innovation needs to be assessed by facility planners, architects and other consultants. Impact assessment may include changes to spatial and design requirements, operating costs, building services, furniture fittings and equipment.

The cost impact of future service developments must also be factored into the project budget, both capital and operational.

13.9 Specific design requirements

Content
This section can be approached on the premise that design requirements in the AusHFG, relevant legislation and standards will be met by default.

List any design requirements that may be additional to the AusHFG or which are not covered by the AusHFG for this facility.

List requirements due to changes in the model of care that are not covered by the AusHFG or that are considered a high priority or major concern.

Include any items that require special focus.

Points to consider:
- is specialist advice required to brief this service department for example kitchen, supply chain, retail study
- check if Queensland Health state wide policies or procedures apply for example procurement
- requirements for separation of clean and dirty flows
- standard and specialised storage requirements
- what is the impact of any proposed model of service delivery on the whole facility and other facilities on the site. For example will new trolleys fit through both existing and new corridors in a refurbishment
- what is the impact of new equipment and processes on other departments for example on engineering services capacities, loading dock.

Rationale
There are a variety of options for the design of clinical units to meet differing models of care.

This information will assist the architects in producing a design that facilitates the model of care specifically for the facility.
Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example, changes to grouping of amenities.

13.10 Schedule of accommodation

Content
List the key core functional spaces for the unit. Provide the AusHFG room/space name and numbers of them, number of people using the room, non-standard activities, hours of use and a comment if required.

Provide a table with the following headings:
- room tag
- room code
- room name
- standard room
- briefly area m²
- number of rooms
- subtotal of briefly area m²
- occupancy (patient, staff, visitor)
- functional description
- comments.

In some cases, such as food services, specialist consultant advice must be sought to provide the schedule of accommodation.

This schedule is an initial list and will be the basis of further work by planners and architects, as all schedules will need to be checked against statutory requirements.

Rationale
The facility or HHS provides a list of the core rooms/spaces required to delivery services according to the model or care for the facility.

Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example, changes to grouping of amenities.

This is key information for input to the costing model for the facility.

This information will be included in the strategic assessment and subsequent business cases.

13.11 Summary of changes to model of service delivery

Content
List changes to the current model of service delivery that will have an impact on the project, in particular but not limited to spaces, equipment and technology.

Rationale
Architects require this information to design unit layouts and for the development of the accommodation brief and schedule of accommodation. Architects are also able to respond early to any changes in model or operation, for example changes to grouping of amenities.
Changes to models of care can impact upon multiple clinical, clinical support and non-clinical services.
Appendix A LIST OF FUNCTIONAL PLANNING UNITS

The following is a list of typical functional planning units. It is not intended to be a complete list as the scope of projects varies widely.

<table>
<thead>
<tr>
<th>Clinical service department/units</th>
<th>Clinical support department/units</th>
<th>Non-clinical department/units</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Acute Medical Inpatient Unit and all sub specialist units</td>
<td>• Aboriginal and Torres Strait Islander Health</td>
<td>• Administration</td>
</tr>
<tr>
<td>• Acute Surgical Inpatient Unit and all sub specialist units</td>
<td>• Allied Health</td>
<td>• Ambulance Bays</td>
</tr>
<tr>
<td>• Ambulatory Care</td>
<td>• Biomedical Engineering</td>
<td>• Archive</td>
</tr>
<tr>
<td>• Birth Suite</td>
<td>• Chaplaincy and Pastoral Care</td>
<td>• Café, public and staff</td>
</tr>
<tr>
<td>• Cardio Vascular Interventional Suite</td>
<td>• Equipment Pool</td>
<td>• Cafeteria, staff</td>
</tr>
<tr>
<td>• Day Units</td>
<td>• Health Promotion</td>
<td>• Carpark</td>
</tr>
<tr>
<td>• Day of Surgery Unit</td>
<td>• Helipad</td>
<td>• Cashier</td>
</tr>
<tr>
<td>• Coronary Care Unit</td>
<td>• Medical Imaging</td>
<td>• Central Energy Facility</td>
</tr>
<tr>
<td>• Emergency Department</td>
<td>• Morgue</td>
<td>• Child Care Centre</td>
</tr>
<tr>
<td>• Endoscopy Suite</td>
<td>• Multi Faith Centre</td>
<td>• Commercial and Retail</td>
</tr>
<tr>
<td>• High Dependency Unit</td>
<td>• Nuclear medicine</td>
<td>• Corporate Services</td>
</tr>
<tr>
<td>• Intensive Care Unit</td>
<td>• Pathology</td>
<td>• Courier Service</td>
</tr>
<tr>
<td>• Interventional Medical Imaging</td>
<td>• Pharmacy</td>
<td>• Disaster Recovery Store</td>
</tr>
<tr>
<td>• Mental Health Services and all sub units</td>
<td>• Sterile Supply</td>
<td>• Facility Management</td>
</tr>
<tr>
<td>• Neonatal Intensive Care Unit</td>
<td>• Volunteers</td>
<td>• Food Services</td>
</tr>
<tr>
<td>• Oncology Unit</td>
<td></td>
<td>• Engineering Services</td>
</tr>
<tr>
<td>• Operating Theatre Suite</td>
<td></td>
<td>• Environmental Services</td>
</tr>
<tr>
<td>• Outpatients</td>
<td></td>
<td>• Facility Foundation</td>
</tr>
<tr>
<td>• Paediatric Intensive Care</td>
<td></td>
<td>• Flammable store</td>
</tr>
<tr>
<td>• Post Anaesthetic Care Unit</td>
<td></td>
<td>• ICT</td>
</tr>
<tr>
<td>• Procedure Suite</td>
<td></td>
<td>• Laundry</td>
</tr>
<tr>
<td>• Radiation Oncology</td>
<td></td>
<td>• Loading Dock</td>
</tr>
<tr>
<td>• Renal Dialysis</td>
<td></td>
<td>• Mailroom</td>
</tr>
<tr>
<td>• Short Stay Observation Unit</td>
<td></td>
<td>• Medical Gas Store</td>
</tr>
<tr>
<td>• Sleep Laboratories</td>
<td></td>
<td>• Patient Information (medical/health records)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pharmacy IV Store</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Revenue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Security</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Supply Store</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Waste Management</td>
</tr>
</tbody>
</table>

A clinical service unit is defined as a service in the facility where clinical services are provided directly to inpatients and outpatients.

A clinical support service unit is defined as a service with specific design requirements that supports direct clinical care to the patient.

A non-clinical unit is defined as a service that has specific design requirements, is essential to the functioning of a health facility but has no clinical or clinical support role.
Appendix B REFERENCED DOCUMENTS

Standards
The following standards have been grouped as ‘general’ or discipline specific. All designers are required to adhere to the requirements of the Australian Standards irrespective of whether these are listed as discipline specific standards or not. The grouping is provided to assist designers only as a ready-reference.

<table>
<thead>
<tr>
<th>Category</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Building Code of Australia</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 1170:2011 - Structural design actions – General principles</td>
</tr>
<tr>
<td></td>
<td>AS 1432:2004 - Copper tubes for plumbing and drainage applications</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 2107:2000 - Recommended design sound levels and reverberation times for building interiors</td>
</tr>
<tr>
<td></td>
<td>2021:2000 - Acoustics - Aircraft noise intrusion - Building siting and construction</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 2243.1:2005 - Safety in laboratories - Planning and operational aspects</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 2243.2:2006 - Safety in laboratories - Chemical aspects</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 2243.3:2010 - Safety in laboratories - Microbiological safety and containment</td>
</tr>
<tr>
<td></td>
<td>AS 2243.4:1998 - Safety in laboratories - Ionizing radiations</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 2243.5:2004 - Safety in laboratories - Non-ionizing radiations - Electromagnetic, sound and ultrasound</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 2243.6:2010 - Safety in laboratories - Plant and equipment aspects</td>
</tr>
<tr>
<td></td>
<td>AS 2243.7:1991 - Safety in laboratories - Electrical aspects</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 2243.8:2006 - Safety in laboratories - Fume cupboards</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 2243.9:2009 - Safety in laboratories - Recirculating fume cabinets</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 2243.10:2004 - Safety in laboratories - Storage of chemicals</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 2982:2010 - Laboratory design and construction - General requirements</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 3000:2007 - Electrical Installations</td>
</tr>
<tr>
<td></td>
<td>AS/ISO 31000 Risk Management</td>
</tr>
<tr>
<td></td>
<td>AS 3996:2006 - Access covers and grates</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 4187:2003 - Cleaning, disinfecting and sterilizing reusable medical and surgical instruments and equipment, and maintenance of associated environments in health care facilities</td>
</tr>
<tr>
<td></td>
<td>AS 4260:1997 - High efficiency particulate air (HEPA) filters – Classification, construction and performance</td>
</tr>
<tr>
<td></td>
<td>AS/NZS ISO 14644:2002 – Cleanrooms and Associated Controlled Environments</td>
</tr>
<tr>
<td></td>
<td>HB 436:2004 - Risk management guidelines</td>
</tr>
<tr>
<td></td>
<td>AS 4970-2009 Protection of trees on development sites</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discipline specific</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>AS/NZS 3013:2005 - Electrical installations – Classification of the fire and mechanical performance of wiring systems elements</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 3080:2003 – Telecommunications installations – Generic cabling for commercial premises</td>
</tr>
<tr>
<td></td>
<td>AS/ACIF S009:2009 – Installation requirements for customer cabling</td>
</tr>
<tr>
<td>Category</td>
<td>Standard</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Electrical | • AS/NZS 1680.1:2006 - Interior and workplace lighting – General principles and recommendations
• AS/NZS 1768:2007 - Lightning Protection
• AS/NZS 2293.2:2008 - Emergency Escape Lighting and Exit Signs for Buildings
• AS/NZS 2500:2004 - Guide to the safe use of electricity in patient care
• AS/NZS 3003:2011 - Electrical installations - Patient treatment areas of hospitals, medical, dental practices and dialyzing locations.
• AS/NZS 3009:1998 - Electrical Installations – Emergency Power Supplies in Hospitals
• AS/NZS 3017:2007 – Electrical installations – Verification guidelines
• AS/NZS 3439:2002 – Low-voltage switchgear and control gear assemblies
• AS/NZS CISPR 14.1:2010 – Electromagnetic Compatibility or internationally recognised equivalent(s)
• Standards Australia —Handbook on Electromagnetic Compatibility Standards and Regulation
| Fire | • AS 1221:2003 - Fire Hose Reels
• AS 1603:1998 - Automatic fire detection and alarm systems
• AS 1670:2004 - Fire detection, warning and intercom systems
• AS 1668.3:2001 - Smoke control systems for large single compartments or smoke reservoirs
• AS 1690:1975 – Rules for the safe design, construction and performance of domestic oil-fired appliances (withdrawn)
• AS/NZS 1850:2009 – Portable fire extinguishers – classification, rating and performance testing
• AS 1851:2008 - Maintenance of fire protection systems and equipment
• AS 2118:2006 - Automatic fire sprinkler systems
• AS/NZS 2293:2008 - Emergency evacuation lighting and exit signage for buildings
• AS 2419:2007 - Fire hydrant installations
• AS/NZS 2441:2009 - Installation of fire hose reels
• AS 2444:2001 - Portable fire extinguishers and fire blankets
• AS 2941:2008 – Fixed fire protection installations
• AS 4118:1996 – Fire Sprinkler system components
• AS 4428:2002 - Fire detection, warning, control and intercom systems - control and indicating equipment
• AS ISO 14520 (various parts):2009 - Gaseous fire-extinguishing systems - Physical properties and system design |
| Hydraulics | • AS/NZS 1596:2008 - The storage and handling of LP Gas
• AS 3500:2003 – Plumbing and drainage Set
• AS 4032:2005 - Water supply - Valves for the control of hot water supply temperatures
• AS/NZS:2010 5601 Gas installations Set |
| Lifts | • AS 1428:2009 - Design for access and mobility;
• AS 1735:2006 - Lift, Escalators and moving walks
• AS 4431:1996 - Guidelines for safe working on new lift installations in new constructions
• EN81.1 Safety Rules for the Construction and Installation of Lifts – Part 1 – Electric Lifts
• EN115
• ASME A17.1
• CIBSE Guide D Transportation Systems in Buildings |
| Mechanical | • AS 1324:2001 - Air filters for use in general ventilation and air-conditioning
• AS 1668.1:1998 - The use of ventilation and air-conditioning in buildings: Fire and smoke control in multi-compartment buildings |
Category

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS 1668.2:2002</td>
<td>The use of ventilation and air-conditioning in buildings: Ventilation design for indoor air contaminant control</td>
</tr>
<tr>
<td>AS 1668.3:2001</td>
<td>The use of ventilation and air-conditioning in buildings: Smoke control systems for large single compartments or smoke reservoirs</td>
</tr>
<tr>
<td>AS 2639:1994</td>
<td>Laminar flow cytotoxic drug safety cabinets - Installation and use</td>
</tr>
<tr>
<td>AS 2686.1:1984</td>
<td>(withdrawn)</td>
</tr>
<tr>
<td>AS 2686.2:1985</td>
<td>(withdrawn)</td>
</tr>
<tr>
<td>AS/NZS 3666:2011</td>
<td>Air handling and water systems of buildings</td>
</tr>
<tr>
<td>AS 3892:2001</td>
<td>Pressure equipment - Installation</td>
</tr>
<tr>
<td>AS 4254:2002</td>
<td>Ductwork for air-handling systems in buildings</td>
</tr>
<tr>
<td>AS 4343:2005</td>
<td>Pressure equipment - Hazard levels</td>
</tr>
<tr>
<td>AS 4260:1997</td>
<td>High efficiency particulate air (HEPA) filters - Classification, construction and performance</td>
</tr>
<tr>
<td>AS 4426:1997</td>
<td>Thermal insulation of pipework, ductwork and equipment - Selection, installation and finish</td>
</tr>
<tr>
<td>HB 260:2003</td>
<td>Hospital acquired infections – Engineering down the risk</td>
</tr>
<tr>
<td>Seismic Restraint Manual</td>
<td>(Guidelines for Mechanical Services by SMACNA)</td>
</tr>
<tr>
<td>CIBSE Guides</td>
<td>particular Guide B for commissioning</td>
</tr>
<tr>
<td>AS 1210:2010</td>
<td>Pressure vessels</td>
</tr>
<tr>
<td>AS 1894:1999</td>
<td>The storage and handling of non-flammable cryogenic and refrigerated liquids</td>
</tr>
<tr>
<td>AS 4484:2004</td>
<td>Gas cylinders for industrial, scientific, medical and refrigerant use - Labelling and colour coding</td>
</tr>
<tr>
<td>AS 2030 (various)</td>
<td>Gas Cylinders (series).</td>
</tr>
<tr>
<td>AS 2120:1992</td>
<td>Medical suction equipment</td>
</tr>
<tr>
<td>AS 2120.3:1992</td>
<td>Suction equipment powered from a vacuum or pressure source</td>
</tr>
<tr>
<td>AS 2473.3-2007</td>
<td>Valves for compressed gas cylinders - Outlet connections for medical gases</td>
</tr>
<tr>
<td>AS 2568:1991</td>
<td>Medical gases—Purity of compressed medical breathing air.</td>
</tr>
<tr>
<td>AS 2896:2011</td>
<td>Medical gas systems—Installation and testing of non-flammable medical gas pipeline systems</td>
</tr>
<tr>
<td>AS 3840:1998</td>
<td>Pressure regulators for use with medical gases.</td>
</tr>
<tr>
<td>AS 3840.1:1998</td>
<td>Pressure regulators and pressure regulators with flow-metering devices</td>
</tr>
<tr>
<td>AS 4041:2006</td>
<td>Pressure piping</td>
</tr>
<tr>
<td>AS 4332:2004</td>
<td>The storage and handling of gases in cylinders</td>
</tr>
<tr>
<td>AS 4484:2004</td>
<td>Gas cylinders for industrial, scientific, medical and refrigerant use - Labelling and colour coding.</td>
</tr>
<tr>
<td>BS 5682</td>
<td>Specification for terminal units, hose assemblies and their connectors for use with medical gas pipeline systems</td>
</tr>
<tr>
<td>AS/NZS 1158 Set:2010</td>
<td>Lighting for roads and public spaces Set</td>
</tr>
<tr>
<td>AS/NZS 2201.1:2007</td>
<td>to AS/NZS 2201.5:2008 - Intruder alarm systems</td>
</tr>
<tr>
<td>AS/NZS 2208:1999</td>
<td>Safety Glazing Materials in Buildings</td>
</tr>
<tr>
<td>AS 4485.1:1997</td>
<td>Security for Health Care Facilities (Part 1: General Requirements)</td>
</tr>
<tr>
<td>AS4083:2010</td>
<td>Planning for Emergencies; Healthcare Facilities</td>
</tr>
</tbody>
</table>
POLICIES AND IMPLEMENTATION STANDARDS
The following policies and implementation standards were referenced to inform this brief.

Policies
Queensland Health (2010) Clinical Support Infrastructure Policy - Sterilisation Capacity
Queensland Health (2011) Procedure for Building Performance Evaluation, V1.0
Queensland Health (2011) Third Party Infrastructure Partnership Policy
Queensland Health, (2011) Car Park Infrastructure Policy, v1
Queensland Health, Asset and Properties Services (2011) Asset Maintenance Policy v1.1
Queensland Health, Asset and Properties Services (2011) Asset Maintenance Policy, Protocol for Asset Maintenance Funding v 1.1
Queensland Health, Health Planning and Infrastructure Division (2010) Clinical Support Infrastructure Policy - Sterilisation Capacity
Queensland Health, Health Planning and Infrastructure Division (2011) Capital Infrastructure Planning Policy, V3.0
Queensland Health, Health Planning and Infrastructure Division (2011) Wayfinding Policy, V1.1
Queensland Health, Health Planning and Infrastructure Division (2011) Capital Delivery Program
Queensland Health, Health Planning and Infrastructure Division (2011) Capital Delivery Program, Procedure for Inducting User Group Representatives into the Capital Project Team at Project Initiation Stage
Queensland Health, Policy Planning and Asset Services, (2011) Third Party Infrastructure Partnership Policy, V1.1
Implementation Standards
Queensland Health (2011) Asset Maintenance funding Implementation Standard v1
Queensland Health, (2010), Signage - Capital Works Projects Implementation Standard v1.0
Queensland Health, (2011) Car Park Infrastructure Implementation Standard v1
Queensland Health, (2011) Third Party Infrastructure Partnership Implementation Standard for Project Delivery v1.2
Queensland Health, (nd) Capital Infrastructure Investigation Implementation Standard, v2
Queensland Health, (nd) Capital Infrastructure Proposal Implementation Standard v2
Queensland Health, Health Planning and Infrastructure Division (2011) Capital Infrastructure Investigation Implementation Standard v2.0 (DRAFT)
Queensland Health, Health Planning and Infrastructure Division (2011) Wayfinding Implementation Standard v1.1
Queensland Health, Planning Branch (nd) Implementation Standard for Capital Infrastructure Investigations v3
Queensland Health, Policy Planning and Asset Services (2011) Third Party Infrastructure Partnership Implementation Standard - Project Delivery v1.1

OTHER REFERENCES
Other documents listed below were referenced to inform this brief.

Australian Commission on Safety and Quality in Health Care, (2011) National Safety and Quality Health Service (NSQHS) Standards
Australian Institute of Quantity Surveyors (AIQS) - Australian Cost Management Manual – Volume 1

Queensland Health, (2011) *Queensland Health Style Guide*

Queensland Health, (nd) *Mackay Base Facility Redevelopment, Guidance for Developing a Security User Requirement*

Queensland Health, Design Standards Unit (2009) *Employee Housing Design Standards and Guidelines*

Queensland Work Health and Safety Act - 2011

TERMS AND DEFINITIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accommodation brief</td>
<td>The accommodation brief is a listing of the key functional rooms and spaces and their number, which make up a department or facility. It is used at the strategic functional design brief stage.</td>
</tr>
<tr>
<td>Architect</td>
<td>An architect is trained in the planning, design and oversight of the construction of buildings and other structures.</td>
</tr>
<tr>
<td>Area (or space)</td>
<td>A room, space or 'area' with a specific use. The area requirement may be enclosed or may be without walls as part of a larger area.</td>
</tr>
<tr>
<td>Area benchmark</td>
<td>Prescriptive minimum or maximum areas.</td>
</tr>
<tr>
<td>Building Code of Australia</td>
<td>The regulation controlling construction of all buildings in Australia and any subsequent or updates.</td>
</tr>
<tr>
<td>Building performance evaluation</td>
<td>A methodology developed to support the systematic evaluation of health service buildings and facilities.</td>
</tr>
<tr>
<td>Capital Infrastructure Requirements</td>
<td>Term used to describe the four volumes of requirements for Queensland Health Capital Infrastructure Planning and Design.</td>
</tr>
<tr>
<td>Capital infrastructure planning</td>
<td>Determines the requirements of land, buildings, building services, equipment and site improvements (for example car parks) to support operational needs of health services now and in the future.</td>
</tr>
<tr>
<td>Circulation space</td>
<td>The space required within a department or unit to enable movement and functionality between individual rooms/ spaces for example the corridor that joins two rows of rooms or the entrance alcove to a room. Circulation space is nominated as a percentage of total usable floor area prior to the development of the design.</td>
</tr>
<tr>
<td>Clinical service units</td>
<td>A service in the facility where clinical services are provided directly to patients, For example:</td>
</tr>
<tr>
<td></td>
<td>• emergency</td>
</tr>
<tr>
<td></td>
<td>• inpatient</td>
</tr>
<tr>
<td></td>
<td>• interventional suites/perioperative</td>
</tr>
<tr>
<td></td>
<td>• outpatients</td>
</tr>
<tr>
<td></td>
<td>• ambulatory/day areas</td>
</tr>
<tr>
<td>Clinical Services Capability Framework</td>
<td>A standard set of minimum capability criteria for service delivery and planning. The capability of any health service is recognised as an essential element in the provision of safe and quality patient care.</td>
</tr>
<tr>
<td>Clinical support unit</td>
<td>A service with specific design requirements that supports direct clinical care to the patient. For example:</td>
</tr>
<tr>
<td></td>
<td>• medical imaging</td>
</tr>
<tr>
<td></td>
<td>• nuclear medicine</td>
</tr>
<tr>
<td></td>
<td>• pharmacy</td>
</tr>
<tr>
<td></td>
<td>• pathology.</td>
</tr>
<tr>
<td>Commercial space</td>
<td>The designated commercial areas of a site.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Commissioning - infrastructure | There are two types of commissioning:
 • Building commissioning—refers to the physical facility completion for occupation by the contractor. The activities include the successful running of all plant and equipment
 • Operational commissioning—refers to activities undertaken leading up to handover of the building to the users. Typical activities include familiarisation of staff with safety, security and communications systems.
 The main objectives of appropriately commissioning a facility are to:
 • ensure new facilities and equipment are ready for occupancy and use, i.e. fit for purpose
 • ensure that the new equipment meets all government legislative requirements
 • train staff in the operation of new equipment and safety procedures
 • identify any minor defects which require rectification by the contractor
 • receive all warranties and procedure manuals. |
| Commissioning - operational service| Operational service commissioning—refers to opening a service safely by staff. |
| Concept plan | The plan establishes the areas of a site/s where future development would occur (in line with service requirements). The plan incorporates:
 • service map with precincts identified for future development
 • service activity zones within a precinct, for example proposed uses, co-location proposals
 • main transport routes to the site and within the site
 • block drawings (at department level) of the proposed buildings including scale and footprint. |
| Condition assessment | The methodology employed to determine the condition of assets owned and maintained by an organisation or service. Accurate and standardised asset condition data enables asset managers to accurately target their limited maintenance funds to provide maximum user benefit. |
| Cost benchmark | The cost model, based on real, similar facilities, used to evaluate project costs for a similar type of building. |
| Defect inspection | An inspection that is undertaken to determine areas of non-compliance with the Building Code of Australia standards. |
| Design development | Design development includes:
 • completion of design in detail including architectural and engineering design
 • confirmation that the design meets current government policies
 • confirmation of the cost estimate to demonstrate the project is within budget
 • obtaining agreement or sign off from users. |
<p>| Design principles | The principles that govern how the elements of design are arranged within a composition, for example facility. |
| Engineer | An engineer develops solutions for technical problems. They design materials, structures, machines and systems while considering the limitations imposed by safety, practicality and cost. |
| Expansion space | An area nominated in the functional design brief to be included for future service delivery expansion. |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility</td>
<td>A complex of buildings, structures, roads and associated equipment, such as a facility or healthcare facility that represents a single management unit for financial, operational maintenance or other purposes.</td>
</tr>
<tr>
<td>Feasibility study</td>
<td>Evaluates options against a set of agreed criteria and presents a: • detailed analysis of a preferred facility development strategy • realistic estimate of the total project investment.</td>
</tr>
<tr>
<td>Final business case</td>
<td>A comprehensive analysis of the relative merits (financial and socio-economic) of identified options to determine the preferred option. The business case report forms the basis for government approval of the project and the allocation of capital and recurrent funding to construct and operate the facility.</td>
</tr>
<tr>
<td>Fittings</td>
<td>Fixed items attached to walls, floors or ceilings that do not require service connections such as curtain and IV tracks, hooks, mirrors, blinds, joinery, pin boards.</td>
</tr>
<tr>
<td>Fixed equipment</td>
<td>Items that are permanently fixed to the building or permanently connected to a service distribution system.</td>
</tr>
<tr>
<td>Fixtures</td>
<td>Fixed items that require service connection (for example electrical, hydraulic, mechanical) and includes basins, light fittings, clocks, and medical service panels. Not to be confused with ‘fixed equipment’ such as theatre pendants.</td>
</tr>
<tr>
<td>Floor plans</td>
<td>Floor plans define the room layouts on each level/area of a facility.</td>
</tr>
<tr>
<td>Functional areas</td>
<td>Areas or zones within a clinical, clinical support or non-clinical support service, for example the functional area of a clinical service may include the following: • main entry/reception/clerical area • assessment/procedural area • staff offices/administrative and management area • staff amenities area • inpatient area including outdoor areas.</td>
</tr>
<tr>
<td>Functional Design Brief</td>
<td>A description of the functions to be accommodated and the relationships between functions for a proposed capital project. The functional design brief should identify how the project meets the objectives and policies of the organisation.</td>
</tr>
<tr>
<td>Functional relationships</td>
<td>The co-dependencies and interdependencies of areas within the facility as a whole, and of individual clinical, clinical support and non-clinical support services.</td>
</tr>
<tr>
<td>Functional spaces</td>
<td>The key functional spaces within a facility being: • clinical areas • clinical support areas • non-clinical support areas • staff administration areas • multipurpose outdoor space • commercial space • circulation space.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| Furniture, fittings and equipment (FFE) | FFE that are additional to the basic building structure. As per the AusHFG, FFE is grouped into categories as follows:
 - Group 1: items supplied and fixed by the contractor. These are included in the construction contract.
 - Group 2: items supplied by the client and fixed by the contractor. These include items that are transferred but require installation by the contractor, or where the client chooses to buy a piece of equipment and give it to the contractor for installation.
 - Group 3: items supplied and installed by the client. These include all moveable items that can easily be transferred or installed by staff and major items of electromedical equipment that are purchased from the project budget, but are installed and commissioned by a third party.
 - Group 4: consumable items purchased and installed by the client outside the capital budget. This category includes bed linens, foodstuffs and disposable supplies. |
<p>| Future proofing | The future functionality of the facility will not be unduly compromised by changes in models of care or service delivery or the advent of new technology. |
| Guidelines | A collection of recommendations that describe an acceptable level of facility provision. |
| Handover | The act of relinquishing property or authority to another; as, the handover of a building/facility to the client. |
| Handover manuals | A suite of documents detailing what has been installed, the commissioning outcomes for all systems and the operational and maintenance requirements for the facility. Documentation provided includes drawings, commissioning data, equipment technical literature, maintenance programs and key contractor contacts. |
| Health facility planner | A health facility planner undertakes area wide planning for health facilities or planning of a particular unit on the basis of projected consumer/client need. This does not include facility design and construction or architectural plans. |
| Health planning unit | All the rooms, spaces and internal circulation that make up a particular health service department and that are necessary for that department to function. |
| Health service plan | Health service plans provide information on the current and projected health needs of a population, contain evidence based service models, and outline a process for change, including defined service goals, objectives and strategies. The health service planning process aims to ensure that health services align and grow with changing patterns of need while making the most effective use of available and future resources. Service planning must precede and inform other types of planning, including capital infrastructure, workforce and information management. |
| Health service planner | A health service planner leads or works in partnership to develop strategic directions and service developments for a corporate entity as a whole, a facility or a clinical stream or service. |
| Heath service planning activities | Service planning benchmarks are used to determine future requirements to deliver health services. The utilisation of a planning benchmark is linked to the CSCF level of service. The department endorsed benchmarks are used for planning. |
| Hot floor | The floor/s of the facility on which the technical suites are located. Ideally on one floor but not always possible in a large facility. |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
</table>
| Infrastructure assessment | An assessment of the suitability of existing infrastructure in the delivery of health services. It incorporates the physical and functional aspects of buildings and building services and equipment and includes:
 • building condition assessment including strengths and deficiencies
 • assessment of current function in delivering health services (for example role in service activities) and issues with the asset in performing the required function
 • current use and potential capacity to meet service requirements, for example frequency of use, purpose, changes over time
 • rectification costs where required. |
| Interior designer | Interior designers plan and detail building interiors for effective use with particular emphasis on space allocation, traffic flow, building services, furniture, fixtures, furnishings and surface finishes. They consider the purpose, efficiency, comfort, safety and aesthetic of interior spaces to arrive at an optimum design. |
| Land assessment | An assessment of potential sites for the acquisition of land for a health facility. This assessment includes:
 • future expansion areas
 • access to road networks and public transport
 • issues such as urban design, town planning and cultural heritage. |
| Maintenance plan | A schedule of activities required to service and maintain plant, equipment and facilities. The maintenance plan will include preventative maintenance, statutory maintenance and condition based maintenance activities. |
| Master plan | A thorough investigation of a feasible range of facility planning options which meet the services needs/gaps, resulting in confirmation of the site location and a recommended plan for the future development of the health service/agency, within a prescribed timeframe and estimate. |
| Master planning | Identifies a preferred infrastructure development strategy for the site to meet future service requirements. The plan includes:
 • future health service requirements
 • building condition assessment and site assessment
 • infrastructure assessment
 • schedule of accommodation
 • local and state planning requirements
 • environmental impact assessments
 • determination of open space areas
 • assessment traffic and roads on and near the site including public transport
 • car parking
 • geotechnical analysis of the site
 • site development options and the preferred option
 • staffing of proposed development
 • category two cost estimate of the preferred option
 • risk mitigation and management plan. |
<p>| Model of care | A description of how care is managed and organised, providing the clinical and organisational framework for the service. |
| Model of service delivery | A description of how non-clinical support services are managed and organised, providing the organisational framework of the service. |</p>
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multipurpose space</td>
<td>A category of space which can accommodate a range of functions including group meetings (staff or patient), multi disciplinary meetings and patient therapy spaces.</td>
</tr>
<tr>
<td>Non-clinical support units</td>
<td>A non-clinical unit is defined as a service that has specific design requirements, is essential to the functioning of a health facility but has no clinical or clinical support role. Examples include: • building engineering management • food services • hotel services • security • supply • waste management.</td>
</tr>
<tr>
<td>Operational policies</td>
<td>A statement outlining the objectives, principal functions and modes of operation of facility, a department, particular service or activity at a non HHS level. At HHS level there are operational briefs and local work instructions/procedures.</td>
</tr>
<tr>
<td>Operational training</td>
<td>Training that develops, maintains, or improves the operational readiness of individuals or units.</td>
</tr>
<tr>
<td>Patient journey</td>
<td>A component of the facility model of care and in general terms means the following stages of the patient pathway or patient flow through the healthcare system: • access • diagnosis • treatment and intervention • inpatient care • discharge • outpatients.</td>
</tr>
<tr>
<td>Performance audit</td>
<td>A suite of documents detailing what has been installed, the commissioning outcomes for all systems, and the operational and maintenance requirements for the facility. Documentation provided includes drawings, commissioning data, equipment technical literature, maintenance programs and key contractor contacts.</td>
</tr>
<tr>
<td>Pneumatic tube system (PTS)</td>
<td>A system incorporating a series of tubes through which cylindrical containers are propelled.</td>
</tr>
<tr>
<td>Pod</td>
<td>A group of core spaces.</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal protective equipment includes gloves, gowns, masks, aprons, caps, shoe covers and goggles.</td>
</tr>
<tr>
<td>Principle consultant/consultants</td>
<td>In most projects the principal consultant will be the architect. The principal consultant is responsible for leadership of the consultant team. Consultants are responsible to the project control group to provide specialist expertise and advice in management, planning, design and construction. For large or complex projects, a project manager or director will be responsible for leadership of the consortia of consultants and sub-consultants.</td>
</tr>
<tr>
<td>Project Assurance Framework (PAF)</td>
<td>The foundation framework for ensuring that project management is undertaken effectively across the Queensland public sector, and delivers value for money to the government from its significant investment in project activity. PAF is a whole-of-government project assessment process that establishes a common approach to assessing projects at critical stages in their lifecycle. Its aim is to maximise the benefits returned to government from project investments.</td>
</tr>
</tbody>
</table>
Table: Term and Definition

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project brief</td>
<td>The project brief is a document initially prepared on completion of PDP which summarises the client needs. It defines all elements of the project, states project and budget objectives, service delivery outcomes and can be used as a benchmark to measure quality outcomes at the end of the project. It may be updated throughout subsequent stages of the project. The project brief includes the design brief, project procurement strategy, ICT requirements, project program, cost estimates and Prequalification service risk rating for the project.</td>
</tr>
<tr>
<td>Project Definition Plan</td>
<td>Clearly defines the scope of the building required to accommodate services to be provided by a new facility. The PDP details options for operational policies, models of care and accommodation requirements in the new facility.</td>
</tr>
<tr>
<td>Project design brief</td>
<td>Part of the project brief, the project design brief outlines planning and design principles, and the functional requirements of the project.</td>
</tr>
<tr>
<td>Project manager</td>
<td>The project manager works with the procurement manager in managing the project on behalf of the project owner. The project manager's responsibility is to manage the scope, time, cost, quality, resources, communication and risk aspects of the project.</td>
</tr>
<tr>
<td>Project director</td>
<td>The project director Queensland Health capital infrastructure projects, is the person who has the authority to run the project on a day-to-day basis on behalf of the project board (steering committee). The project director brings together and manages all aspects of the program or project to deliver within budget, time and scope.</td>
</tr>
<tr>
<td>Quantity surveyor</td>
<td>Quantity surveyors are employed predominantly on major building and construction projects to estimate and monitor construction costs, from the feasibility stage of a project through to the completion of the construction period. After construction they may be involved with tax depreciation schedules, replacement cost estimation for insurance purposes and, if necessary, mediation and arbitration.</td>
</tr>
<tr>
<td>Refurbishment</td>
<td>Standards Australia defines this as 'Work intended to bring an asset up to a new standard or to alter it for a new use.'</td>
</tr>
<tr>
<td>Role delineation or matrix of services at a facility</td>
<td>In Queensland, role delineation refers to levels of service provision as detailed in the CSCF.</td>
</tr>
<tr>
<td>Room data sheets</td>
<td>A briefing document providing information on the minimum requirements for each room in the facility incorporating room details, room fabric, fittings and furniture, fixtures and equipment with associated services.</td>
</tr>
<tr>
<td>Schedule of accommodation</td>
<td>A schedule of accommodation specifies the number and size of rooms that will be required, the relationships between rooms and groups of rooms, the finishes, equipment, furniture that will fit the room for its functional purpose and the environmental conditions that will assist the purpose. Environmental conditions might include temperature range, humidity, air movement and acoustic isolation.</td>
</tr>
<tr>
<td>Schematic design</td>
<td>Preparation of design briefs and layout, including key physical elements, areas, locations, and volumes, including basic building services systems and cost estimate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site assessment</td>
<td>An assessment of land and other property related aspects of a site/s to identify future development opportunities. The assessment incorporates: • site access, such as roads and parking • access to building services, such as power and water • proximity to other health services • social and cultural aspects of the site, such as suitability of the development in relation to surrounding uses and impacts on neighbouring developments, such as noise and traffic • natural environment, including features and design opportunities • statutory impacts, for example zoning, flood levels • sustainability of services during redevelopment • size of site, for example collocation and commercial opportunities and public open space and future expandability • physical attributes, for example geology, gradient and climate • financial costs, for example demolition of existing structures, site preparation, water upgrade • economic analysis, for example other land use options, impact on services.</td>
</tr>
<tr>
<td>Strategic business case</td>
<td>This provides a preliminary justification for the program or project based on a strategic assessment of business needs and a high level assessment of the program or project’s likely costs and potential for success.</td>
</tr>
<tr>
<td>Telehealth</td>
<td>Telehealth is the transmission of health-related services or information over the telecommunications infrastructure. As such, Telehealth includes both telemedicine, which involves providing clinical services remotely, and non-clinical elements of the healthcare system, such as education.</td>
</tr>
<tr>
<td>Travel</td>
<td>The space that is required for the circulation of people and goods both vertically and horizontally in a facility. Examples include ramps, lift wells, links, tunnels, main corridors and detached covered ways joining two buildings.</td>
</tr>
<tr>
<td>Treatment area</td>
<td>The Building Code of Australia defines this as: ‘an area within a patient care area such as an operating theatre and rooms used for recovery, minor procedures, resuscitation, intensive care and coronary care from which a patient may not be readily moved.’</td>
</tr>
<tr>
<td>Universal design</td>
<td>A non-discriminatory design approach that provides increased usability for everyone without the need for adaption or specialised design.</td>
</tr>
<tr>
<td>User</td>
<td>A user is defined as those people who have experienced services (staff member, contractor, patient, relative or friend) or who could potentially access services provided by Queensland Health in the future.</td>
</tr>
<tr>
<td>Wayfinding</td>
<td>Wayfinding is a methodology of arranging indicators such as signs, light, colour, materials and pathways to guide people to their destinations. A successful wayfinding program is intuitive and self-navigable and it protects the overall visual integrity of the site. Wayfinding is specific to its place and visitors.</td>
</tr>
<tr>
<td>Wayfinding scheme</td>
<td>A wayfinding scheme is the term used to describe a wayfinding master plan which is discreet and separate from a capital works master plan. As such it includes the consideration and development of all four elements involved with wayfinding in a single facility, the built environment, pre-visit information, signage system and staff instruction.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Wayfinding signage</td>
<td>The sign system used for effective wayfinding, including visual, tactile and auditory signage, designed to provide organised and timely information at key points around a site in a manner that should be accessible to and understood by all users.</td>
</tr>
<tr>
<td>Wayfinding system</td>
<td>A wayfinding system is more than just signs; it encompasses architecture, landscape architecture, technology infrastructure, lighting, landmarks and orientation points.</td>
</tr>
<tr>
<td>Workspace</td>
<td>A desk area used for the purpose of administration duties, education and research.</td>
</tr>
</tbody>
</table>