1. Statement
Enterprise architecture foundations include principles, quality attributes and broad design goals. These Enterprise Architecture foundational elements shape the Enterprise Architecture and drive architectural requirements for implementations and procurements. They provide validation points for decision making by architects in both devising solutions and the governance of solutions.

This Standard identifies the foundations for applying the Department of Health Enterprise Architecture to support the department’s vision, strategic plans, and performance objectives.

2. Scope
Compliance with this standard is mandatory.

This standard applies to all employees, contractors and consultants within the Department of Health divisions and commercialised business units.

3. Content

3.1 Enterprise Architecture Principles, Rationale and Implications

3.1.1 Align to Organisational Readiness
Architecture and capabilities shall be appropriate for the enterprise based on the assessed organisational maturity as a result of stakeholder engagement and participatory governance. The enterprise should have the business processes, knowledge and understanding to take advantage of advanced aspects of ICT systems and architectures.

Rationale
Architecture and system capabilities are only beneficial if they can be used in the target environment.

Implications
Adopting a strategy of ‘ICT as a service’ may enable faster uptake of advanced aspects of ICT systems and architecture and contemporary solutions.

Organisational readiness should be assessed and evaluated as part of any ICT investment. ICT initiatives should not be adopted based on technical merit only.

Supported ICT initiatives that introduce more mature capabilities should have transition plans to incrementally improve organisational readiness.

3.1.2 Do No Harm
The Department of Health and the overall public health system shall not be negatively impacted by the implementation of new or changed solutions. This principle aims to protect against the notion of ‘one step forward, two steps back’.

Rationale
The introduction of new or changed capability can have a negative impact on the existing business and ICT environment. The negative impact can be more harmful to business operations than the benefits realised by the new or changed capability.

Implications
A baseline of the current environment should be known and documented.

Transition and integration plans shall be created.
Products shall be regression tested prior to live implementation.
Risks shall be managed (with identified mitigation plans) – incremental deployment may be advisable.
A rollback plan shall be defined and tested – the ability to recreate the baseline environment is required.
Where negative impact is identified, it shall be documented, approved and justified.
At risk systems should be stabilised to ensure the continued delivery of healthcare services and to ensure that no harm is done directly or indirectly through the loss of at risk systems.

3.1.3 Enterprise above Solution
Optimisation of the enterprise 'system of systems’ shall supersede optimisation of a solution system.

Rationale
Information management decisions should provide maximum benefit to the enterprise as a whole. Decisions made from a system-wide perspective with appropriate governance have greater long-term value than decisions made from any particular organisational or project perspective. Maximum return on investment requires information management decisions to adhere to enterprise-wide drivers and priorities.

Implications
Achieving maximum system-wide benefit will require changes in the way Department of Health plans and manages information. Technology alone will not bring about this change. Some organisation entities and/or projects may have to concede their own preferences for the greater benefit of the enterprise. Information management initiatives and projects should be conducted in accordance with the enterprise plan. Individual organisation entities and projects should pursue information management initiatives and projects which conform to the blueprints and priorities established by the enterprise. As needs arise, priorities should be adjusted. A governance group with cross-enterprise representation should make these decisions.

3.2 Enterprise Architecture Quality Attribute Requirements

3.2.1 Accessibility
Whenever business requirements so dictate, systems shall be accessible to users with different capabilities at multiple locations on multiple devices because healthcare ICT users are mobile, use a range of devices and have different unique capabilities and approaches for interacting with ICT systems.

Rationale
If a system is not accessible at the right time, at the right place, on the right device, then it is of little value to the enterprise.

Information sharing, access and increased interoperability drives productivity across the Queensland public health sector.

The Australian Charter of Healthcare Rights includes rights of access, safety, respect, participation and privacy.

Implications
Accessibility requirements, including regulatory and policy based, must be identified, documented and understood.
Solutions capable of delivering their interface across multiple, common channels and devices will be preferred.
Solutions may need to provide multiple variations of their user interface targeted for different display devices.
Flexible user interface delivery, based on modern web and mobile technology, will be preferred.
Strict criteria, often mandated by legislation and policy, for accessibility for users with hearing and/or
vision impairment must be adhered to.

3.2.2 Adaptability

As the business needs, goals and objectives change, architecture and solutions shall be able to change and extend to constantly stay aligned with business needs, including extensibility, which refers to the ability of systems to extend to incorporate new functionality with minimal impact to the system or the operating environment of the system.

Rationale

Architecture and solutions that do not support the business do not benefit the enterprise. As the business changes, architecture and solutions that can’t adapt will be marginalised and/or deprecated.

Implications

Solutions and architecture should use adaptive processes, methodologies and strategies and leverage proven design patterns and best practices that allow for continuous change and extension.

Solutions incorporating best practices around abstraction, loose coupling, modularity and encapsulation will be favoured.

Agnostic solutions whereby particular products or technologies are not ‘locked-in’ and are abstracted behind consistent, standards-based interfaces will be favoured to allow the system to evolve more readily as business requirements evolve.

Existing applications may need to be encapsulated to expose their capabilities with a standard interface while abstracting the system from specific implementation details.

Solutions should document how they can be changed and extended.

3.2.3 Availability

Wherever business requirements so dictate, enterprise level business operations supported by technology shall be maintained in spite of system interruptions because as ICT system operations become more pervasive, the business becomes more dependent on them.

This quality attribute includes the following related qualities:

- **Recoverability:** Systems shall be able to recover from expected and unexpected outages.
- **Reliability:** Systems shall minimise expected and unexpected outages regardless of usage.

Rationale

Business continuity requirements should be supported. Systems should be designed to maximise availability and minimise both expected and unexpected down time.

Implications

Systems should be designed to meet or exceed availability requirements.

The impact of hardware failure, natural disasters, and/or data corruption should not exceed business continuity tolerances. Contingency plans and mitigation strategies may be required.

Dependency on shared system applications and purchased ICT services requires that the risks of business interruption should be established in advance and managed. Management includes, but is not limited to, periodic reviews, testing for vulnerability and exposure, or designing mission-critical services to assure business function continuity through redundant or alternative capabilities.

Recoverability, redundancy, and maintainability should be addressed at the time of systems design.

Applications should be assessed for criticality and impact on the enterprise mission in order to determine what level of continuity is required and what corresponding recovery plan is necessary.

Sufficient hardware and network resources should be available to minimise scheduled and unscheduled outages and support redundancy, rollover and recovery of systems.

3.2.4 Interoperability

Software and hardware shall conform to a defined enterprise architecture that promotes the exchange of information amongst ICT systems.
Rationale
A patient centric organisation requires an information system that supports every step of the ‘continuum of care’ to ensure the right information is available to the right person at the right time. Since the Queensland public health system environment is heterogeneous and comprised of numerous disparate systems, there is a need for integration-based system interoperability to exchange information across organisational boundaries, due to the differences between healthcare organisations. Interoperability standards enable applications to communicate and exchange data with each other and with enterprise services as an integrated system. This results in a unified view with multiple disparate systems coming together and sharing information in a standard, open manner.

Implications
Interoperability standards and industry standards should be followed to enable applications to operate with each other and with enterprise services as an integrated system.
A process for setting standards, reviewing and revising them periodically, and granting exceptions should be established.
Additional interoperability considerations may be required in adopting the ‘ICT as a service’ model of operation.

3.2.5 Maintainability
Solutions shall be designed and implemented to optimise, as much as possible, operational maintenance of the solution. This quality attribute incorporates the ‘Keep It Simple’ concept.

Rationale
Solutions that are designed to optimise operational maintenance ensure that the ‘health’ of the operating environment can be maximised. Maintainable solutions also reduce troubleshooting and the need for enhancement work.

Implications
Solutions and operational standards should be well documented.
Simple solutions to complex problems are preferred.
Operational requirements should be defined and agreed to early in the process for designing the solution.

3.2.6 Performance
All solutions shall be designed and implemented to achieve performance levels and business benefits as defined by business requirements with varying performance levels across solutions.

Rationale
As the ICT environment of the enterprise moves from isolated systems towards more integrated systems, the performance of each part of the whole becomes critical. Solutions that are not designed to provide optimal performance levels can cause critical delays in response times that can have significant impact on patient safety and the trust of the users of the ICT environment.

Implications
A solution cannot deviate from performance requirements without explicit justification.
Performance requirements and anticipated business benefits should be defined by the business.
Provider and client systems should be identified and the impact of performance requirements assessed against their capabilities/needs.
Performance testing should be completed to ensure the solution meets performance requirements in normal conditions, load conditions and when the solution is scaled.
Monitoring of performance of a solution should be enabled and Service Level Agreements agreed and put in place.

3.2.7 Scalability
Solutions and architectures shall be able to support future capacity demands by creating designs that scale to meet capacity, whether it is vertical or horizontal scaling. This quality attribute ensures that as the population of Queensland increases so shall the capacity requirements of the ICT systems that support Queensland Health in supplying health services to the population.
Rationale
Systems not designed to support increases in capacity become bottlenecks and risks to the enterprise. This can result in availability and performance issues. Mitigating these issues can be expensive.

Implications
Understanding of current capacity should be documented.
Predictions of future capacity needs should be created and maintained.
A ‘system of systems’ capacity view should be created and maintained to enable the overall capacity management of the ICT environment.
Strategies should be created and put in place that define how the ICT environment will support the scaling of solutions and act as a constraint to the design and implementation of those solutions.

3.2.8 Usability
The user experience shall take into consideration accessibility, a consistent, intuitive user interface, and access to useful help and guidance.

Rationale
Solutions designed for usability promote the adoption and acceptance of the solution with the user community. Adoption of the solution is increased through ensuring the user experience is intuitive and valued.

Implications
Queensland Government and Department of Health specifications and standards for consistent user experience must be adhered to. Refer to the Queensland Government Web Centre and the Department of Health Online Services web sites for further information.
User acceptance testing, including accessibility testing, must be part of the solution process.

3.3 Enterprise Architecture Broad Design Goals

3.3.1 Best practices
Solutions shall be based on industry proven best practices (repeatable strategies, processes, technologies and patterns) with appropriate governance. Best practices shall be ‘fit for purpose’ and used where they bring value.

Rationale
There are multiple ways to solve ICT problems, but some solutions are optimised for better delivery and/or other desirable characteristics. Using best practices, solutions can be optimised for delivery and can demonstrate high Quality of Service levels (e.g. quality attributes such as performance, scalability, availability, etc.).

Implications
Applicable best practices should be identified, catalogued and accepted by the enterprise.
Adherence to best practices should become a measure of quality and should be inspected and governed.
Existing or new architectures or solutions not adhering to adopted best practices may require revisions.

3.3.2 Integrated Systems
Systems shall demonstrate interoperability and integrate as seamlessly as possible with other systems. This design goal embodies the idea that ‘the whole is greater than the sum of its parts’.

Rationale
The enterprise ICT environment is best described as a ‘system of systems’. In this type of environment, individual systems must integrate to create the composite system. It is the composite system that benefits the enterprise as a whole. Integrated systems can also achieve greater standardisation and data exchange.
Implications
Integration points must be defined.
Standard interfaces and payloads should be emphasised.
A common integration broker technology is required.
Integration capabilities must be heavily emphasised in product procurements.

3.3.3 Model Driven
The design of solutions and enterprise architectures shall be described using models. The implementation and governance of these solutions should rely on these models to accurately describe the solution, its components and their interactions.

Rationale
A model is a formal representation of fact and knowledge that bridges the gap between qualitative descriptions and tangible implementations. A model uses consistent notations, classifications and naming conventions and descriptions to succinctly and unambiguously describe a solution from different perspectives. A model led approach ensures that the implementation is a true representation of the stated business objectives, intent and requirements.

Implications
Modelling standards including those defined in the Information Standardisation and Modelling Protocol should be adopted by the Department of Health that are appropriate to the desired perspectives, based on industry ‘best practice’, and consistent with related architecture views. These standards should ensure consistent notations, classifications and naming conventions, minimum requirements for descriptions and reuse of models.
Models should be the primary means of communicating solution architectures and designs as part of solution assurance and review.
The Department of Health Enterprise Architecture should ensure interoperability and integration through use of enterprise information and terminology models to define payload specifications, and interaction models to define service interfaces.

3.3.4 Patient Centricity
The patient shall become the focal point for solutions, particularly the information and data models, as care becomes more complex, and diagnosis and treatment becomes more fragmented into speciality areas, there is an increasing need for a patient-focused view of information.

Rationale
Patient centricity provides care providers at each point of care delivery with all the relevant information to support treatment and clinical decision making, and ensures safe and effective care delivery. Improved accuracy, reduced patient safety incidents, and reduction in duplicate tests, procedures and medications can result from access to comprehensive sets of patient information. Patient centricity also aligns with enterprise needs for research, reporting and data sharing with external agencies and with the Australian Charter of Healthcare Rights including rights of access, safety, respect, participation and privacy.

Implications
Information and capabilities cannot be bound by or centred on a department, facility, location or other organisational entity.
Data models may need to change to properly support a patient centric view of information.

3.3.5 Privacy
Solutions shall ensure the privacy and confidentiality of the information they access.

Rationale
Privacy and confidentiality of information is required by legislation, regulatory requirements and Department of Health policy.

Implications
The requirements of the Health Information: Disclosure and Access Policy and the Information Privacy Act 2009 must be addressed
Person consent must be managed. Information types must be classified to enable application of the appropriate privacy and confidentiality rules to person specific information. Auditing of all access to information that is classified confidential (or higher) must be recorded in terms of request, processing, rendering and record keeping of that information. Information should only be accessible to authorised users for authorised purposes. Where consent is applicable, access to information should only be allowed when consent has been given, except where privacy rules allow otherwise. Any breach of access of confidential information by an unauthorised requestor must be reported to supervisors/management as well as audited. Due to the nature of the health environment a mechanism must be put in place to enable a breach of access to confidential information (also referred to as ‘break glass’) to occur under exceptional circumstances. These breaches must be audited. Privacy and confidentiality officers must be informed of any breach of access, including:

- Who was the requestor?
- What information was requested?

3.3.6 Reuse

Solutions shall be designed with reuse in mind, both reuse of other existing solutions and reuse by other solutions. This broad design goal subsumes the following related design goals:

- **Modularity**: Solutions shall decompose their functionality into loosely coupled, atomic modules.
- **Composability**: Solutions shall be able to be part of a larger subsuming system without constraining the subsuming system.

Rationale

Reusability reduces overall costs and complexity, provides better management control, provides optimisation opportunities and supports a Service Oriented Architecture. Modularity helps achieve extensibility, flexibility, portability, scalability, adaptability and helps avoid vendor lock-in. Composability is necessary for achieving a Service Oriented Architecture and is a result of reusable components.

Implications

Designing for reuse typically incurs a larger up-front development cost. Solutions should demonstrate modularity and composability. Vendor solutions or products demonstrating a modular architecture will be favoured. Solutions currently in place that are not modular may need to be re-factored or may require complete replacement instead of incremental enhancements. Solutions should be able to expose functionality via standards based interfaces. Solutions should be designed and implemented to enable functions that can be called by external ICT systems.

3.3.7 Security

Solutions shall be secure and immune to inappropriate access to their data and functionality. To provide an appropriate level of protection to information and ICT assets, security shall be driven by business requirements, shall be compliant with law and resilient to change and shall be manageable within the healthcare system. Security shall provide the level of protection determined by the business (information classification and sensitivity, security policy, etc.) and external factors (legislation, industry standards, etc.).

Rationale

Security is required by legislation, regulatory requirements and Department of Health policy. Security is necessary to ensure patient privacy and to establish trust between components of the
ICT environment as well as with and amongst the ICT users.

Implications

Internal security factors, information classification and sensitivity, security policies, etc., are included in the Information Security Policy and associated documents.

External security factors, such as legislation, industry standards, etc., must be identified and supported.

A process for security compliance implementation, audit and exception control must be established.

Development of new common service solutions may be required to automate security policy implementation by providing access to run-time security capabilities.

3.3.8 Service Orientation

Software capabilities shall be encapsulated and exposed using Service Oriented Architecture (SOA) patterns and best practices.

Rationale

SOA approaches are proven to result in flexible, decoupled systems. This approach provides robust support for software changes and extensions and allows the system to evolve with business requirements while still satisfying other principles and architectural concerns.

Implications

Business requirements should be defined along the lines of horizontal services instead of along traditional demarcation lines based on specialties, departments or facilities.

Service definition requires significant analysis and business stakeholder participation.

Service interface definition should become a necessary and important deliverable critical to successful implementations with desirable quality and interoperability characteristics.

Investment in service and messaging infrastructure is required to support loose coupling between applications and services and help deliver the benefits of a service oriented approach.

Processes supportive of an SOA approach should be defined and adopted by the enterprise.

3.3.9 Standards Based

The Department of Health shall rely on recognised information, messaging and infrastructure standards specific to healthcare. Solutions, information and technologies should be standards-based in order to enable an interoperable, adaptable, scalable and evolvable architecture.

Rationale

Standards are fundamental to the successful sharing of information. Standards alignment will ensure interoperability and consistency both within the ICT system and between the enterprise and external partners (e.g. general practitioners).

Implications

Training and education concerning existing standards and their uses is required to ensure a standards-based approach.

Participation in the standards definition process is desired to influence development of standards that meet Department of Health objectives.

Adoption of standards may require changes to existing applications and infrastructure.

Vendor products based on open standards will be preferred.

3.3.10 Unique Identification

All entities (e.g., persons, organisations, records, equipment, etc.) shall be uniquely and unambiguously identified across the enterprise.

Rationale

Person and non-person entities are core constituents of healthcare information and business processes and require unique identifiers and identity management processes. Many of the business objectives and priorities as well as many of the enterprise architecture principles will not be possible, or will be significantly constrained, if person and non-person entities are not universally and unambiguously identified and tracked across all enterprise information systems. The way that the
enterprise operates in a highly distributed software environment (distributed across multiple institutions and application implementations) and the move to adopting ‘ICT as a service’ with potential multiple suppliers add even greater importance to the need for unique identifiers.

Implications
An enumeration and identity management capability (tools and processes) must be created or enhanced to meet enterprise identity management needs.

All standards for identity management must be followed including departmental policy and standards and national standards.

Existing, non-universal identity solutions should be assessed and catalogued.

Existing identity solutions may need to be replaced with the enterprise solution or interface and map to the enterprise solution.

Processes should be established to resolve identity management conflicts and changes.

3.3.11 Web Enabled
Web technology shall be the preferred delivery mechanism for providing information to users.

Rationale
Web delivery centralises deployment and helps manage and ensure many of the quality attributes. Maintenance and deployment complexity and costs should be reduced.

Implications
As web technologies currently do not provide as rich an interface as desktop applications (although this difference continues to narrow), user interface expectations should be managed accordingly. Vendor solutions with web capabilities will be preferred.

Increased web delivery may have increased security concerns which should be addressed.

4. Related legislation and documents
Relevant legislation and associated documentation includes, but is not limited to, the following:

Legislation
- Copyright Act 1968 (Cth)
- Electronic Transactions Act 2001
- Evidence Act 1977
- Financial Accountability Act 2009
- Financial Accountability Regulation 2009
- Financial and Performance Management Standard 2009
- Healthcare Identifiers Act 2010
- Hospital and Health Boards Act 2011
- Information Privacy Act 2009
- Personally Controlled Electronic Health Records Act 2012
- Public Health Act 2005
- Public Interest Disclosure Act 2010
- Public Records Act 2002
- Public Service Act 2008
- Right to Information Act 2009

Supporting documents
- Enterprise Architecture Framework Standard
- Enterprise Business Architecture Standard
- Enterprise Information Architecture Standard
• Enterprise Applications Architecture Standard
• Enterprise Technology Architecture Standard
• Information Security Standard
• Information System Sustainability Standard
• Interoperability Standard
• Service Oriented Architecture Standard
• Systems Integration Standard
• Enterprise Architecture Development Method Standard
• Integration Patterns Standard
• Enterprise Architecture Guide

Related documents
• Queensland Government
 − Health Sector (Clinical Records) Retention and Disposal Schedule
 − Queensland Treasury Information Sheet 3.3 – Information and Communication Technology (ICT)
• Queensland Government Enterprise Architecture (QGEA), Department of Science, Information Technology, Innovation and the Arts (DSITIA):
 − Applicability and authority of the QGEA Guideline
 − Information Architecture Supporting Classification Definitions White Paper
 − QGEA Alignment Policy
 − QGEA Foundation Principles
 − ICT-as-a-service Policy
 − ICT-as-a-service offshore data storage and processing Policy
 − ICT Cabling Infrastructure Policy
 − Integration Policy
 − Queensland Government Application Classification Framework
 − Queensland Government Application Portfolio Framework Detail
 − Queensland Government Business Process Classification Framework
 − Queensland Government Enterprise Architecture Framework 2.0 (QGEA)
 − Queensland Government Information Classification Framework
 − Queensland Government Information Principles
 − Queensland Government Information Security Classification Framework
 − Queensland Government Information Security Policy Framework
 − Queensland Government Technology Classification Framework
 − Queensland Government ICT Strategy 2013-17
 − Software Currency Policy
 − Use of ICT facilities and devices policy (IS38)
 − What is Information Architecture White Paper
• Queensland Health
 − Blueprint for better healthcare in Queensland 2013
 − Deloitte: Review of Health Services Information Agency
 − eHealth Strategy 2006
 − Queensland Health ICT Governance Framework
• Department of Health
 - ICT Strategic Plan 2012-2016
 - Assignment of Unique Record Numbers Policy
 - Clinical Records Management Policy
 - Data Management Policy
 - Information Security Policy
 - Intellectual Property Policy
 - Issue of Information and Statistics HR Policy E6
 - Records Management for Administrative and Functional Records Policy
 - Research Management Policy
 - Strategic Plan 2012 – 2016 (2013 Update)
 - Use of ICT Services Policy

5. Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition / Explanation / Details</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>A software system deployed by the agency which has part of an agency’s business process embedded with it, for example, SAP.</td>
<td>Queensland Government Chief Information Office (QGCIO) Glossary</td>
</tr>
<tr>
<td>Artefact</td>
<td>Artefacts are documents that are components of the Department of Health Enterprise Architecture including but not limited to the policy, standards, protocols, procedures and guidelines.</td>
<td>Adapted from QGCIO Glossary</td>
</tr>
<tr>
<td>Authoritative source</td>
<td>An authoritative source is the one data source from a set of competing data sources that is designated by the enterprise as the most trusted and complete and representative of the ‘truth’. Any emergent discrepancies between competing data sources will be resolved by reference to the authoritative source. The term ‘source of truth’ is synonymous with the term ‘authoritative source’ with the latter being the preferred term.</td>
<td>Department of Health Strategy and Architecture Office</td>
</tr>
<tr>
<td>Broad Design Goals</td>
<td>Enterprise architecture contributes to the organisational strategy by describing how ICT solutions should be designed and delivered to satisfy business objectives. Broad design goals provide an overall description of how organisational strategies will be achieved. They are not solutions to strategic objectives in their own right, but provide patterns and approaches that will ensure that conformant solutions help achieve the strategies. Broad design goals are intended to be applied to the design and development of solutions.</td>
<td>Department of Health Strategy and Architecture Office</td>
</tr>
<tr>
<td>Common</td>
<td>Services supporting health service delivery activities across some Hospital and Health Services. Common is one of the three categories in the applications portfolio with Core and Local.</td>
<td>Queensland Health ICT Governance Framework</td>
</tr>
<tr>
<td>Core</td>
<td>Services supporting health service delivery activities that are performed state-wide.</td>
<td>Queensland Health ICT Governance</td>
</tr>
<tr>
<td>Term</td>
<td>Definition / Explanation / Details</td>
<td>Source</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Core</td>
<td>Core is one of the three categories in the applications portfolio with Common and Local.</td>
<td>Framework</td>
</tr>
<tr>
<td>Dispensation</td>
<td>For the purpose of this policy, the term 'dispensation' means the endorsed exception from compliance with the enterprise architecture.</td>
<td>Adapted from QGCIO Glossary</td>
</tr>
<tr>
<td>Domain</td>
<td>The categories used as part of the Queensland Government Enterprise Architecture (QGEA) to provide a consistent and convenient method of logically grouping business processes, information assets, applications and technologies and ICT initiatives into meaningful and manageable areas for analysis.</td>
<td>QGCIO Glossary</td>
</tr>
<tr>
<td>Enterprise</td>
<td>The Department of Health and the Hospital and Health Services (HHSs) make up the public healthcare system known as Queensland Health. The use of the word enterprise within this document indicates the public healthcare system as it is influenced by enterprise architecture.</td>
<td>Department of Health Strategy and Architecture Office</td>
</tr>
<tr>
<td>Enterprise Architecture</td>
<td>The practice of applying a comprehensive and rigorous method for describing a current and future structure and behaviour for an organisation's processes, information, applications, technology and human resources, so that they align with the organisation's strategic direction.</td>
<td>QGCIO Glossary</td>
</tr>
<tr>
<td>Enterprise ICT Service</td>
<td>Enterprise ICT Services are described in the ICT Service Catalogue available on the QHEPS intranet.</td>
<td>Enterprise ICT Service</td>
</tr>
<tr>
<td>Enterprise Services</td>
<td>Enterprise Services provide core business functionality that is common to multiple applications (e.g. Clinical Data Service, Provider Directory Service etc)</td>
<td>Department of Health Strategy and Architecture Office</td>
</tr>
<tr>
<td>Fit for purpose</td>
<td>The extent to which the current functionality of the Information Asset/Application/ Technology meets the need of the particular business area (NB: not the entire business of the agency) in which it is used.</td>
<td>QGCIO Glossary</td>
</tr>
<tr>
<td>Information Model</td>
<td>The Department of Health Information Model refers to the collection of models, data set specifications (DSS) and standards that have been iteratively developed across the organisation. Key sources of data standards include the Queensland Health Data Dictionary and the Corporate Reference Data System. Within the department, the information model equates to an enterprise information model.</td>
<td>Department of Health Strategy and Architecture Office</td>
</tr>
<tr>
<td>Local</td>
<td>Services supporting activities that may be specific to a local area or that arise from local innovation. Local is one of the three categories in the applications portfolio with Core and Common.</td>
<td>Queensland Health ICT Governance Framework</td>
</tr>
<tr>
<td>Mandated/ Mandated Options</td>
<td>If an applicable position states a mandated product/service, it must be used. If there are multiple products/services for an applicable position, one of products/services must be used. A dispensation is required to not use a mandated product/service.</td>
<td>Department of Health Strategy and Architecture Office</td>
</tr>
<tr>
<td>Term</td>
<td>Definition / Explanation / Details</td>
<td>Source</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Principles</td>
<td>Principles represent the Information and Communication Technology (ICT) interpretation and application of the organisation’s mission and philosophy. They are fundamental and apply to all levels of ICT initiatives from EA to specific solution implementations. Adherence to the principles ensures alignment to organisational strategy and intent and results in a sustainable ICT environment.</td>
<td>Department of Health Strategy and Architecture Office</td>
</tr>
<tr>
<td>Processes</td>
<td>A series of logically related activities or tasks performed together to produce a defined set of results. Processes are defined in the Business Process Classification document.</td>
<td>www.businessdictionary.com</td>
</tr>
<tr>
<td>Quality attributes</td>
<td>Quality attributes, often referred to as system qualities, are quality characteristics that extend the requirements of any ICT initiative or architecture. Quality attributes are intended to be applied to both solutions and the enterprise architecture. Quality attributes ensure that solutions are not only functional, but also supportable by the organisation and traceable to organisational non-functional requirements. Quality attributes ensure that the enterprise architecture is designed and developed in a way that supports business strategies and drivers and provides direction and guidance to solutions.</td>
<td>Department of Health Strategy and Architecture Office</td>
</tr>
<tr>
<td>Technologies</td>
<td>Support the application portfolio of the business, including software technologies, hardware, and network support.</td>
<td>QGCIO Glossary</td>
</tr>
</tbody>
</table>

Version Control

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>05 Jun. 2014</td>
<td>Effective date.</td>
</tr>
<tr>
<td>1.1</td>
<td>10 Jun. 2015</td>
<td>Transferred information to new template.</td>
</tr>
</tbody>
</table>
Appendix 1 – Additional information

Responsibilities

<table>
<thead>
<tr>
<th>Position</th>
<th>Responsibility</th>
<th>Audit criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Information Officer</td>
<td>• Approve Department of Health Enterprise Architecture artefacts</td>
<td>Approved artefacts</td>
</tr>
</tbody>
</table>
| Strategy & Architecture Office | • Regularly review and maintain Department of Health Enterprise Architecture artefacts
• Process and monitor dispensation requests and dispensations granted | Up to date artefacts
Management of dispensations |
| ICT Governance Authority (designated) | • Review and endorse Department of Health Enterprise Architecture artefacts
• Review and endorse dispensation requests and monitor dispensations granted | Endorsed artefacts
Endorsed dispensations |
| All employees, contractors and consultants within the Department of Health divisions, agencies and commercialised business units | • Apply the relevant requirements of the Department of Health Enterprise Architecture artefacts | Ability to demonstrate compliance |